Class MatrixBlock
- java.lang.Object
-
- org.apache.sysds.runtime.matrix.data.MatrixValue
-
- org.apache.sysds.runtime.matrix.data.MatrixBlock
-
- All Implemented Interfaces:
Externalizable
,Serializable
,Comparable
,org.apache.hadoop.io.Writable
,org.apache.hadoop.io.WritableComparable
,CacheBlock<MatrixBlock>
- Direct Known Subclasses:
CompressedMatrixBlock
public class MatrixBlock extends MatrixValue implements CacheBlock<MatrixBlock>, Externalizable
- See Also:
- Serialized Form
-
-
Nested Class Summary
Nested Classes Modifier and Type Class Description static class
MatrixBlock.SparsityEstimate
-
Nested classes/interfaces inherited from class org.apache.sysds.runtime.matrix.data.MatrixValue
MatrixValue.CellIndex
-
-
Field Summary
Fields Modifier and Type Field Description static boolean
CONVERT_MCSR_TO_CSR_ON_DEEP_SERIALIZE
static SparseBlock.Type
DEFAULT_INPLACE_SPARSEBLOCK
static SparseBlock.Type
DEFAULT_SPARSEBLOCK
static int
HEADER_SIZE
static double
MAX_SHALLOW_SERIALIZE_OVERHEAD
static double
SPARSITY_TURN_POINT
static int
ULTRA_SPARSE_BLOCK_NNZ
static double
ULTRA_SPARSITY_TURN_POINT
static double
ULTRA_SPARSITY_TURN_POINT2
-
Constructor Summary
Constructors Constructor Description MatrixBlock()
MatrixBlock(double val)
MatrixBlock(int rl, int cl, boolean sp)
MatrixBlock(int rl, int cl, boolean sp, long estnnz)
MatrixBlock(int rl, int cl, boolean sp, long estnnz, boolean dedup)
MatrixBlock(int rl, int cl, double val)
MatrixBlock(int rl, int cl, double[] vals)
MatrixBlock(int rl, int cl, long estnnz)
MatrixBlock(int rl, int cl, long nnz, SparseBlock sblock)
Constructs a sparseMatrixBlock
with a given instance of aSparseBlock
MatrixBlock(int rl, int cl, DenseBlock dBlock)
MatrixBlock(MatrixBlock that)
MatrixBlock(MatrixBlock that, boolean sp)
MatrixBlock(MatrixBlock that, SparseBlock.Type stype, boolean deep)
-
Method Summary
All Methods Static Methods Instance Methods Concrete Methods Modifier and Type Method Description MatrixBlock
aggregateBinaryOperations(MatrixBlock m1, MatrixBlock m2, MatrixBlock ret, AggregateBinaryOperator op)
MatrixBlock
aggregateBinaryOperations(MatrixBlock m1, MatrixBlock m2, AggregateBinaryOperator op)
static MatrixBlock
aggregateTernaryOperations(MatrixBlock m1, MatrixBlock m2, MatrixBlock m3, MatrixBlock ret, AggregateTernaryOperator op, boolean inCP)
MatrixBlock
aggregateUnaryOperations(AggregateUnaryOperator op, MatrixValue result, int blen, MatrixIndexes indexesIn, boolean inCP)
void
allocateAndResetSparseBlock(boolean clearNNZ, SparseBlock.Type stype)
MatrixBlock
allocateBlock()
Future<MatrixBlock>
allocateBlockAsync()
MatrixBlock
allocateDenseBlock()
boolean
allocateDenseBlock(boolean clearNNZ)
boolean
allocateDenseBlock(boolean clearNNZ, boolean containsDuplicates)
void
allocateDenseBlockUnsafe(int rl, int cl)
This should be called only in the read and write functions for CP This function should be called before calling any setValueDenseUnsafe()boolean
allocateSparseRowsBlock()
boolean
allocateSparseRowsBlock(boolean clearNNZ)
static MatrixBlock
append(List<MatrixBlock> that, MatrixBlock ret, boolean cbind, int k)
MatrixBlock
append(MatrixBlock that)
Append that matrix to this matrix, while allocating a new matrix.MatrixBlock
append(MatrixBlock[] that, MatrixBlock result, boolean cbind)
Append that list of matrixes to this matrix.MatrixBlock
append(MatrixBlock that, boolean cbind)
Append that matrix to this matrix, while allocating a new matrix.MatrixBlock
append(MatrixBlock that, MatrixBlock ret)
Append that matrix to this matrix.MatrixBlock
append(MatrixBlock that, MatrixBlock ret, boolean cbind)
Append that matrix to this matrix.void
append(MatrixValue v2, ArrayList<IndexedMatrixValue> outlist, int blen, boolean cbind, boolean m2IsLast, int nextNCol)
void
appendRow(int r, SparseRow row)
void
appendRow(int r, SparseRow row, boolean deep)
void
appendRowToSparse(SparseBlock dest, MatrixBlock src, int i, int rowoffset, int coloffset, boolean deep)
void
appendToSparse(MatrixBlock that, int rowoffset, int coloffset)
void
appendValue(int r, int c, double v)
Append value is only used when values are appended at the end of each row for the sparse representationvoid
appendValuePlain(int r, int c, double v)
MatrixBlock
binaryOperations(BinaryOperator op, MatrixValue thatValue)
MatrixBlock
binaryOperations(BinaryOperator op, MatrixValue thatValue, MatrixValue result)
MatrixBlock
binaryOperationsInPlace(BinaryOperator op, MatrixValue thatValue)
MatrixBlock
chainMatrixMultOperations(MatrixBlock v, MatrixBlock w, MatrixBlock out, MapMultChain.ChainType ctype)
MatrixBlock
chainMatrixMultOperations(MatrixBlock v, MatrixBlock w, MatrixBlock out, MapMultChain.ChainType ctype, int k)
static void
checkCMOperations(MatrixBlock mb, CMOperator op)
void
checkDimensionsForAppend(MatrixBlock[] in, boolean cbind)
void
checkNaN()
Checks for existing NaN values in the matrix block.void
checkNonZeros()
Basic debugging primitive to check correctness of nnz.void
checkSparseRows()
void
checkSparseRows(int rl, int ru)
Basic debugging primitive to check sparse block column ordering.void
cleanupBlock(boolean dense, boolean sparse)
Allows to cleanup all previously allocated sparserows or denseblocks.CM_COV_Object
cmOperations(CMOperator op)
CM_COV_Object
cmOperations(CMOperator op, MatrixBlock weights)
MatrixBlock
colMax()
Wrapper method for reduceall-colMin of a matrix.MatrixBlock
colMax(int k)
MatrixBlock
colMin()
Wrapper method for reduceall-colMin of a matrix.MatrixBlock
colMin(int k)
MatrixBlock
colSum()
Wrapper method for single threaded reduceall-colSum of a matrix.void
compactEmptyBlock()
Free unnecessarily allocated empty block.int
compareTo(Object arg0)
static double
computeIQMCorrection(double sum, double sum_wt, double q25Part, double q25Val, double q75Part, double q75Val)
boolean
containsValue(double pattern)
List<Integer>
containsVector(MatrixBlock pattern, boolean earlyAbort)
void
copy(int rl, int ru, int cl, int cu, MatrixBlock src, boolean awareDestNZ)
In-place copy of matrix src into the index range of the existing current matrix.void
copy(MatrixValue thatValue)
Copy that MatrixValue into this MatrixValue.void
copy(MatrixValue thatValue, boolean sp)
Copy that MatrixValue into this MatrixValue.MatrixBlock
copyShallow(MatrixBlock that)
CM_COV_Object
covOperations(COVOperator op, MatrixBlock that)
CM_COV_Object
covOperations(COVOperator op, MatrixBlock that, MatrixBlock weights)
void
ctableOperations(Operator op, double scalarThat, double scalarThat2, CTableMap resultMap, MatrixBlock resultBlock)
D = ctable(A,v2,w) this <- A; scalar_that <- v2; scalar_that2 <- w; result <- D (i1,j1,v1) from input1 (this) (v2) from sclar_input2 (scalarThat) (w) from scalar_input3 (scalarThat2)void
ctableOperations(Operator op, double scalarThat, MatrixValue that2Val, CTableMap resultMap, MatrixBlock resultBlock)
D = ctable(A,v2,W) this <- A; scalarThat <- v2; that2 <- W; result <- D (i1,j1,v1) from input1 (this) (v2) from sclar_input2 (scalarThat) (i3,j3,w) from input3 (that2)void
ctableOperations(Operator op, MatrixIndexes ix1, double scalarThat, boolean left, int blen, CTableMap resultMap, MatrixBlock resultBlock)
Specific ctable case of ctable(seq(...),X), where X is the only matrix input.void
ctableOperations(Operator op, MatrixValue thatVal, double scalarThat2, boolean ignoreZeros, CTableMap resultMap, MatrixBlock resultBlock)
D = ctable(A,B,w) this <- A; that <- B; scalar_that2 <- w; result <- D (i1,j1,v1) from input1 (this) (i1,j1,v2) from input2 (that) (w) from scalar_input3 (scalarThat2) NOTE: This method supports both vectors and matrices.void
ctableOperations(Operator op, MatrixValue thatVal, MatrixValue that2Val, CTableMap resultMap)
D = ctable(A,B,W) this <- A; that <- B; that2 <- W; result <- D (i1,j1,v1) from input1 (this) (i1,j1,v2) from input2 (that) (i1,j1,w) from input3 (that2)void
ctableOperations(Operator op, MatrixValue thatVal, MatrixValue that2Val, CTableMap resultMap, MatrixBlock resultBlock)
MatrixBlock
ctableSeqOperations(MatrixValue thatMatrix, double thatScalar, MatrixBlock resultBlock)
D = ctable(seq,A,w) this <- seq; thatMatrix <- A; thatScalar <- w; result <- D (i1,j1,v1) from input1 (this) (i1,j1,v2) from input2 (that) (w) from scalar_input3 (scalarThat2)MatrixBlock
ctableSeqOperations(MatrixValue thatMatrix, double thatScalar, MatrixBlock ret, boolean updateClen)
void
denseToSparse(boolean allowCSR)
void
denseToSparse(boolean allowCSR, int k)
void
dropLastRowsOrColumns(Types.CorrectionLocationType correctionLocation)
boolean
equals(Object arg0)
boolean
equals(MatrixBlock arg0)
Analyze if the matrixBlocks are equivalent, the comparsion supports if the differnet sides are differently allocated such as sparse and dense.long
estimateSizeDenseInMemory()
static long
estimateSizeDenseInMemory(long nrows, long ncols)
long
estimateSizeInMemory()
static long
estimateSizeInMemory(long nrows, long ncols, double sparsity)
static long
estimateSizeInMemory(long nrows, long ncols, long nnz)
static long
estimateSizeInMemory(DataCharacteristics dc)
long
estimateSizeOnDisk()
static long
estimateSizeOnDisk(long nrows, long ncols, long nnz)
long
estimateSizeSparseInMemory()
static long
estimateSizeSparseInMemory(long nrows, long ncols, double sparsity)
static long
estimateSizeSparseInMemory(long nrows, long ncols, double sparsity, boolean allowCSR)
static long
estimateSizeSparseInMemory(long nrows, long ncols, double sparsity, SparseBlock.Type stype)
long
estimateSizeSparseInMemory(SparseBlock.Type stype)
boolean
evalSparseFormatInMemory()
Evaluates if this matrix block should be in sparse format in memory.boolean
evalSparseFormatInMemory(boolean allowCSR)
static boolean
evalSparseFormatInMemory(long nrows, long ncols, long nnz)
Evaluates if a matrix block with the given characteristics should be in sparse format in memory.static boolean
evalSparseFormatInMemory(long nrows, long ncols, long nnz, boolean allowCSR)
static boolean
evalSparseFormatInMemory(DataCharacteristics dc)
boolean
evalSparseFormatOnDisk()
Evaluates if this matrix block should be in sparse format on disk.static boolean
evalSparseFormatOnDisk(long nrows, long ncols, long nnz)
Evaluates if a matrix block with the given characteristics should be in sparse format on disk (or in any other serialized representation).void
examSparsity()
Evaluates if this matrix block should be in sparse format in memory.void
examSparsity(boolean allowCSR)
Evaluates if this matrix block should be in sparse format in memory.void
examSparsity(boolean allowCSR, int k)
Evaluates if this matrix block should be in sparse format in memory.void
examSparsity(int k)
Evaluates if this matrix block should be in sparse format in memory.MatrixBlock
extractTriangular(MatrixBlock ret, boolean lower, boolean diag, boolean values)
DataCharacteristics
getDataCharacteristics()
DenseBlock
getDenseBlock()
double[]
getDenseBlockValues()
double
getDouble(int r, int c)
Returns the double value at the passed row and column.double
getDoubleNaN(int r, int c)
Returns the double value at the passed row and column.long
getExactSerializedSize()
Get the exact serialized size in bytes of the cache block.long
getExactSizeOnDisk()
NOTE: The used estimates must be kept consistent with the respective write functions.static long
getHeaderSize()
long
getInMemorySize()
Get the in-memory size in bytes of the cache block.long
getLength()
long
getNonZeros()
int
getNumColumns()
int
getNumRows()
SparseBlock
getSparseBlock()
Iterator<IJV>
getSparseBlockIterator()
Iterator<IJV>
getSparseBlockIterator(int rl, int ru)
double
getSparsity()
String
getString(int r, int c)
Returns the string of the value at the passed row and column.double
getValue(int r, int c)
double
getValueDenseUnsafe(int r, int c)
MatrixBlock
groupedAggOperations(MatrixValue tgt, MatrixValue wghts, MatrixValue ret, int ngroups, Operator op)
Invocation from CP instructions.MatrixBlock
groupedAggOperations(MatrixValue tgt, MatrixValue wghts, MatrixValue ret, int ngroups, Operator op, int k)
int
hashCode()
void
incrementalAggregate(AggregateOperator aggOp, MatrixValue newWithCorrection)
void
incrementalAggregate(AggregateOperator aggOp, MatrixValue correction, MatrixValue newWithCorrection, boolean deep)
void
init(double[][] arr, int r, int c)
NOTE: This method is designed only for dense representation.void
init(double[] arr, int r, int c)
NOTE: This method is designed only for dense representation.double
interQuartileMean()
boolean
isAllocated()
boolean
isEmpty()
boolean
isEmptyBlock()
boolean
isEmptyBlock(boolean safe)
Get if this MatrixBlock is an empty block.boolean
isInSparseFormat()
Returns the current representation (true for sparse).boolean
isShallowSerialize()
Indicates if the cache block is subject to shallow serialized, which is generally true if in-memory size and serialized size are almost identical allowing to avoid unnecessary deep serialize.boolean
isShallowSerialize(boolean inclConvert)
Indicates if the cache block is subject to shallow serialized, which is generally true if in-memory size and serialized size are almost identical allowing to avoid unnecessary deep serialize.boolean
isSparsePermutationMatrix()
boolean
isThreadSafe()
Indicates if concurrent modifications of disjoint rows are thread-safe.static boolean
isThreadSafe(boolean sparse)
Indicates if concurrent modifications of disjoint rows are thread-safe.boolean
isUltraSparse()
boolean
isUltraSparse(boolean checkNnz)
boolean
isVector()
MatrixBlock
leftIndexingOperations(ScalarObject scalar, int rl, int cl, MatrixBlock ret, MatrixObject.UpdateType update)
Explicitly allow left indexing for scalars.MatrixBlock
leftIndexingOperations(MatrixBlock rhsMatrix, int rl, int ru, int cl, int cu, MatrixBlock ret, MatrixObject.UpdateType update)
MatrixBlock
leftIndexingOperations(MatrixBlock rhsMatrix, IndexRange ixrange, MatrixBlock ret, MatrixObject.UpdateType update)
double
max()
Wrapper method for reduceall-max of a matrix.MatrixBlock
max(int k)
Wrapper method for reduceall-max of a matrix.double
mean()
Wrapper method for reduceall-mean of a matrix.double
mean(int k)
double
median()
MatrixBlock
merge(MatrixBlock that, boolean appendOnly)
Merge disjoint: merges all non-zero values of the given input into the current block.MatrixBlock
merge(MatrixBlock that, boolean appendOnly, boolean par)
MatrixBlock
merge(MatrixBlock that, boolean appendOnly, boolean par, boolean deep)
double
min()
Wrapper method for reduceall-min of a matrix.double
min(int k)
double
minNonZero()
Utility function for computing the min non-zero value.static MatrixBlock
naryOperations(Operator op, MatrixBlock[] matrices, ScalarObject[] scalars, MatrixBlock ret)
void
permutationMatrixMultOperations(MatrixValue m2Val, MatrixValue out1Val, MatrixValue out2Val)
void
permutationMatrixMultOperations(MatrixValue m2Val, MatrixValue out1Val, MatrixValue out2Val, int k)
double
pickValue(double quantile)
double
pickValue(double quantile, boolean average)
MatrixBlock
pickValues(MatrixValue quantiles, MatrixValue ret)
double
prod()
Wrapper method for reduceall-product of a matrix.void
putInto(MatrixBlock target, int rowOffset, int colOffset, boolean sparseCopyShallow)
Method for copying this matrix into a target matrix.MatrixBlock
quaternaryOperations(QuaternaryOperator qop, MatrixBlock um, MatrixBlock vm, MatrixBlock wm, MatrixBlock out)
MatrixBlock
quaternaryOperations(QuaternaryOperator qop, MatrixBlock U, MatrixBlock V, MatrixBlock wm, MatrixBlock out, int k)
double
quickGetValue(int r, int c)
double
quickGetValueThreadSafe(int r, int c)
void
quickSetRow(int r, double[] values)
void
quickSetValue(int r, int c, double v)
static MatrixBlock
randOperations(int rows, int cols, double sparsity, double min, double max, String pdf, long seed)
Function to generate the random matrix with specified dimensions (block sizes are not specified).static MatrixBlock
randOperations(int rows, int cols, double sparsity, double min, double max, String pdf, long seed, int k)
Function to generate the random matrix with specified dimensions (block sizes are not specified).static MatrixBlock
randOperations(RandomMatrixGenerator rgen, long seed)
Function to generate the random matrix with specified dimensions and block dimensions.static MatrixBlock
randOperations(RandomMatrixGenerator rgen, long seed, int k)
Function to generate the random matrix with specified dimensions and block dimensions.MatrixBlock
randOperationsInPlace(RandomMatrixGenerator rgen, org.apache.commons.math3.random.Well1024a bigrand, long bSeed)
Function to generate a matrix of random numbers.MatrixBlock
randOperationsInPlace(RandomMatrixGenerator rgen, org.apache.commons.math3.random.Well1024a bigrand, long bSeed, int k)
Function to generate a matrix of random numbers.void
readExternal(ObjectInput is)
Redirects the default java serialization via externalizable to our default hadoop writable serialization for efficient broadcast/rdd deserialization.void
readFields(DataInput in)
long
recomputeNonZeros()
Recomputes and materializes the number of non-zero values of the entire matrix block.long
recomputeNonZeros(int k)
Recompute the number of nonZero values in parallellong
recomputeNonZeros(int rl, int ru)
long
recomputeNonZeros(int rl, int ru, int cl, int cu)
Recomputes the number of non-zero values of a specified range of the matrix block.MatrixBlock
removeEmptyOperations(MatrixBlock ret, boolean rows, boolean emptyReturn)
MatrixBlock
removeEmptyOperations(MatrixBlock ret, boolean rows, boolean emptyReturn, MatrixBlock select)
MatrixBlock
reorgOperations(ReorgOperator op, MatrixValue ret, int startRow, int startColumn, int length)
MatrixBlock
replaceOperations(MatrixValue result, double pattern, double replacement)
void
reset()
void
reset(int rl, int cl)
void
reset(int rl, int cl, boolean sp)
void
reset(int rl, int cl, boolean sp, long estnnz)
void
reset(int rl, int cl, boolean sp, long estnnz, double val)
Internal canonical reset of dense and sparse matrix blocks.void
reset(int rl, int cl, boolean sp, long estnnz, double val, boolean dedup)
void
reset(int rl, int cl, double val)
void
reset(int rl, int cl, long estnnz)
MatrixBlock
rexpandOperations(MatrixBlock ret, double max, boolean rows, boolean cast, boolean ignore, int k)
MatrixBlock
rowSum()
Wrapper method for single threaded reduceall-rowSum of a matrix.MatrixBlock
rowSum(int k)
Wrapper method for multi threaded reduceall-rowSum of a matrix.static MatrixBlock
sampleOperations(long range, int size, boolean replace, long seed)
MatrixBlock
scalarOperations(ScalarOperator op, MatrixValue result)
static MatrixBlock
seqOperations(double from, double to, double incr)
Method to generate a sequence according to the given parameters.MatrixBlock
seqOperationsInPlace(double from, double to, double incr)
long
setAllNonZeros()
void
setDenseBlock(DenseBlock dblock)
long
setNonZeros(long nnz)
void
setNumColumns(int c)
void
setNumRows(int r)
NOTE: setNumRows() and setNumColumns() are used only in ternaryInstruction (for contingency tables) and pmm for meta corrections.void
setSparseBlock(SparseBlock sblock)
void
setValue(int r, int c, double v)
MatrixBlock
slice(int rl, int ru)
Slice a sub block out of the current block and write into the given output block.MatrixBlock
slice(int rl, int ru, boolean deep)
Slice a sub block out of the current block and write into the given output block.MatrixBlock
slice(int rl, int ru, int cl, int cu)
Slice a sub block out of the current block and write into the given output block.MatrixBlock
slice(int rl, int ru, int cl, int cu, boolean deep)
Slice a sub block out of the current block and write into the given output block.MatrixBlock
slice(int rl, int ru, int cl, int cu, boolean deep, MatrixBlock ret)
Slice a sub block out of the current block and write into the given output block.MatrixBlock
slice(int rl, int ru, int cl, int cu, MatrixBlock ret)
Slice a sub block out of the current block and write into the given output block.void
slice(ArrayList<IndexedMatrixValue> outlist, IndexRange range, int rowCut, int colCut, int blen, int boundaryRlen, int boundaryClen)
Slice out up to 4 matrixBlocks that are separated by the row and col Cuts.MatrixBlock
slice(IndexRange ixrange, MatrixBlock ret)
Slice a sub block out of the current block and write into the given output block.MatrixBlock
sortOperations()
MatrixBlock
sortOperations(MatrixValue weights)
MatrixBlock
sortOperations(MatrixValue weights, MatrixBlock result)
MatrixBlock
sortOperations(MatrixValue weights, MatrixBlock result, int k)
void
sortSparseRows()
Sorts all existing sparse rows by column indexes.void
sortSparseRows(int rl, int ru)
Sorts all existing sparse rows in range [rl,ru) by column indexes.void
sparseToDense()
void
sparseToDense(int k)
double
sum()
Wrapper method for reduceall-sum of a matrix.MatrixBlock
sum(int k)
Wrapper method for reduceall-sum of a matrix paralleldouble
sumSq()
Wrapper method for reduceall-sumSq of a matrix.double
sumWeightForQuantile()
In a given two column matrix, the second column denotes weights.static void
ternaryOperationCheck(boolean s1, boolean s2, boolean s3, int m, int r1, int r2, int r3, int n, int c1, int c2, int c3)
MatrixBlock
ternaryOperations(TernaryOperator op, MatrixBlock m2, MatrixBlock m3, MatrixBlock ret)
void
toShallowSerializeBlock()
Converts a cache block that is not shallow serializable into a form that is shallow serializable.String
toString()
MatrixBlock
transposeSelfMatrixMultOperations(MatrixBlock out, MMTSJ.MMTSJType tstype)
MatrixBlock
transposeSelfMatrixMultOperations(MatrixBlock out, MMTSJ.MMTSJType tstype, int k)
MatrixBlock
uaggouterchainOperations(MatrixBlock mbLeft, MatrixBlock mbRight, MatrixBlock mbOut, BinaryOperator bOp, AggregateUnaryOperator uaggOp)
MatrixBlock
unaryOperations(UnaryOperator op)
MatrixBlock
unaryOperations(UnaryOperator op, MatrixValue result)
void
write(DataOutput out)
void
writeExternal(ObjectOutput os)
Redirects the default java serialization via externalizable to our default hadoop writable serialization for efficient broadcast/rdd serialization.MatrixBlock
zeroOutOperations(MatrixValue result, IndexRange range, boolean complementary)
-
Methods inherited from class org.apache.sysds.runtime.matrix.data.MatrixValue
aggregateUnaryOperations
-
-
-
-
Field Detail
-
SPARSITY_TURN_POINT
public static final double SPARSITY_TURN_POINT
- See Also:
- Constant Field Values
-
ULTRA_SPARSITY_TURN_POINT
public static final double ULTRA_SPARSITY_TURN_POINT
- See Also:
- Constant Field Values
-
ULTRA_SPARSITY_TURN_POINT2
public static final double ULTRA_SPARSITY_TURN_POINT2
- See Also:
- Constant Field Values
-
ULTRA_SPARSE_BLOCK_NNZ
public static final int ULTRA_SPARSE_BLOCK_NNZ
- See Also:
- Constant Field Values
-
DEFAULT_SPARSEBLOCK
public static final SparseBlock.Type DEFAULT_SPARSEBLOCK
-
DEFAULT_INPLACE_SPARSEBLOCK
public static final SparseBlock.Type DEFAULT_INPLACE_SPARSEBLOCK
-
MAX_SHALLOW_SERIALIZE_OVERHEAD
public static final double MAX_SHALLOW_SERIALIZE_OVERHEAD
- See Also:
- Constant Field Values
-
CONVERT_MCSR_TO_CSR_ON_DEEP_SERIALIZE
public static final boolean CONVERT_MCSR_TO_CSR_ON_DEEP_SERIALIZE
- See Also:
- Constant Field Values
-
HEADER_SIZE
public static final int HEADER_SIZE
- See Also:
- Constant Field Values
-
-
Constructor Detail
-
MatrixBlock
public MatrixBlock()
-
MatrixBlock
public MatrixBlock(int rl, int cl, boolean sp)
-
MatrixBlock
public MatrixBlock(int rl, int cl, long estnnz)
-
MatrixBlock
public MatrixBlock(int rl, int cl, boolean sp, long estnnz)
-
MatrixBlock
public MatrixBlock(int rl, int cl, boolean sp, long estnnz, boolean dedup)
-
MatrixBlock
public MatrixBlock(MatrixBlock that)
-
MatrixBlock
public MatrixBlock(MatrixBlock that, boolean sp)
-
MatrixBlock
public MatrixBlock(double val)
-
MatrixBlock
public MatrixBlock(int rl, int cl, double val)
-
MatrixBlock
public MatrixBlock(int rl, int cl, long nnz, SparseBlock sblock)
Constructs a sparseMatrixBlock
with a given instance of aSparseBlock
- Parameters:
rl
- number of rowscl
- number of columnsnnz
- number of non zeroessblock
- sparse block
-
MatrixBlock
public MatrixBlock(MatrixBlock that, SparseBlock.Type stype, boolean deep)
-
MatrixBlock
public MatrixBlock(int rl, int cl, DenseBlock dBlock)
-
MatrixBlock
public MatrixBlock(int rl, int cl, double[] vals)
-
-
Method Detail
-
reset
public final void reset()
- Specified by:
reset
in classMatrixValue
-
reset
public final void reset(int rl, int cl)
- Specified by:
reset
in classMatrixValue
-
reset
public final void reset(int rl, int cl, long estnnz)
-
reset
public final void reset(int rl, int cl, boolean sp)
- Specified by:
reset
in classMatrixValue
-
reset
public final void reset(int rl, int cl, boolean sp, long estnnz)
- Specified by:
reset
in classMatrixValue
-
reset
public final void reset(int rl, int cl, double val)
- Specified by:
reset
in classMatrixValue
-
reset
public void reset(int rl, int cl, boolean sp, long estnnz, double val)
Internal canonical reset of dense and sparse matrix blocks.- Parameters:
rl
- number of rowscl
- number of columnssp
- sparse representationestnnz
- estimated number of non-zerosval
- initialization value
-
reset
public void reset(int rl, int cl, boolean sp, long estnnz, double val, boolean dedup)
-
init
public void init(double[][] arr, int r, int c)
NOTE: This method is designed only for dense representation.- Parameters:
arr
- 2d double array matrixr
- number of rowsc
- number of columns
-
init
public void init(double[] arr, int r, int c)
NOTE: This method is designed only for dense representation.- Parameters:
arr
- double array matrixr
- number of rowsc
- number of columns
-
isAllocated
public boolean isAllocated()
-
allocateDenseBlock
public final MatrixBlock allocateDenseBlock()
-
allocateBlockAsync
public Future<MatrixBlock> allocateBlockAsync()
-
allocateBlock
public final MatrixBlock allocateBlock()
-
allocateDenseBlock
public boolean allocateDenseBlock(boolean clearNNZ)
-
allocateDenseBlock
public boolean allocateDenseBlock(boolean clearNNZ, boolean containsDuplicates)
-
allocateSparseRowsBlock
public final boolean allocateSparseRowsBlock()
-
allocateSparseRowsBlock
public boolean allocateSparseRowsBlock(boolean clearNNZ)
-
allocateAndResetSparseBlock
public void allocateAndResetSparseBlock(boolean clearNNZ, SparseBlock.Type stype)
-
allocateDenseBlockUnsafe
public final void allocateDenseBlockUnsafe(int rl, int cl)
This should be called only in the read and write functions for CP This function should be called before calling any setValueDenseUnsafe()- Parameters:
rl
- number of rowscl
- number of columns
-
cleanupBlock
public final void cleanupBlock(boolean dense, boolean sparse)
Allows to cleanup all previously allocated sparserows or denseblocks. This is for example required in reading a matrix with many empty blocks via distributed cache into in-memory list of blocks - not cleaning blocks from non-empty blocks would significantly increase the total memory consumption.- Parameters:
dense
- if true, set dense block to nullsparse
- if true, set sparse block to null
-
getNumRows
public final int getNumRows()
- Specified by:
getNumRows
in interfaceCacheBlock<MatrixBlock>
- Specified by:
getNumRows
in classMatrixValue
-
setNumRows
public final void setNumRows(int r)
NOTE: setNumRows() and setNumColumns() are used only in ternaryInstruction (for contingency tables) and pmm for meta corrections.- Parameters:
r
- number of rows
-
getNumColumns
public final int getNumColumns()
- Specified by:
getNumColumns
in interfaceCacheBlock<MatrixBlock>
- Specified by:
getNumColumns
in classMatrixValue
-
setNumColumns
public final void setNumColumns(int c)
-
getNonZeros
public final long getNonZeros()
- Specified by:
getNonZeros
in classMatrixValue
-
setNonZeros
public final long setNonZeros(long nnz)
-
setAllNonZeros
public final long setAllNonZeros()
-
getSparsity
public final double getSparsity()
-
getDataCharacteristics
public final DataCharacteristics getDataCharacteristics()
- Specified by:
getDataCharacteristics
in interfaceCacheBlock<MatrixBlock>
-
isVector
public final boolean isVector()
-
getLength
public final long getLength()
-
isEmpty
public final boolean isEmpty()
- Specified by:
isEmpty
in classMatrixValue
-
isEmptyBlock
public final boolean isEmptyBlock()
-
isEmptyBlock
public boolean isEmptyBlock(boolean safe)
Get if this MatrixBlock is an empty block. The call can potentially tricker a recomputation of non zeros if the non-zero count is unknown.- Parameters:
safe
- True if we want to ensure the count non zeros if the nnz is unknown.- Returns:
- If the block is empty.
-
getDenseBlock
public DenseBlock getDenseBlock()
-
setDenseBlock
public void setDenseBlock(DenseBlock dblock)
-
getDenseBlockValues
public double[] getDenseBlockValues()
-
getSparseBlock
public SparseBlock getSparseBlock()
-
setSparseBlock
public void setSparseBlock(SparseBlock sblock)
-
getValue
public double getValue(int r, int c)
- Specified by:
getValue
in classMatrixValue
-
setValue
public void setValue(int r, int c, double v)
- Specified by:
setValue
in classMatrixValue
-
quickGetValue
public double quickGetValue(int r, int c)
-
quickSetValue
public void quickSetValue(int r, int c, double v)
-
quickSetRow
public void quickSetRow(int r, double[] values)
-
quickGetValueThreadSafe
public double quickGetValueThreadSafe(int r, int c)
-
getValueDenseUnsafe
public double getValueDenseUnsafe(int r, int c)
-
containsValue
public boolean containsValue(double pattern)
-
containsVector
public List<Integer> containsVector(MatrixBlock pattern, boolean earlyAbort)
-
appendValue
public void appendValue(int r, int c, double v)
Append value is only used when values are appended at the end of each row for the sparse representation
This can only be called, when the caller knows the access pattern of the block- Parameters:
r
- rowc
- columnv
- value
-
appendValuePlain
public void appendValuePlain(int r, int c, double v)
-
appendRow
public void appendRow(int r, SparseRow row)
-
appendRow
public void appendRow(int r, SparseRow row, boolean deep)
-
appendToSparse
public void appendToSparse(MatrixBlock that, int rowoffset, int coloffset)
-
appendRowToSparse
public void appendRowToSparse(SparseBlock dest, MatrixBlock src, int i, int rowoffset, int coloffset, boolean deep)
-
sortSparseRows
public void sortSparseRows()
Sorts all existing sparse rows by column indexes.
-
sortSparseRows
public void sortSparseRows(int rl, int ru)
Sorts all existing sparse rows in range [rl,ru) by column indexes.- Parameters:
rl
- row lower bound, inclusiveru
- row upper bound, exclusive
-
minNonZero
public double minNonZero()
Utility function for computing the min non-zero value.- Returns:
- minimum non-zero value
-
prod
public double prod()
Wrapper method for reduceall-product of a matrix.- Returns:
- the product sum of the matrix content
-
mean
public double mean()
Wrapper method for reduceall-mean of a matrix.- Returns:
- the mean value of all values in the matrix
-
mean
public double mean(int k)
-
min
public double min()
Wrapper method for reduceall-min of a matrix.- Returns:
- the minimum value of all values in the matrix
-
min
public double min(int k)
-
colMin
public final MatrixBlock colMin()
Wrapper method for reduceall-colMin of a matrix.- Returns:
- A new MatrixBlock containing the column mins of this matrix
-
colMin
public final MatrixBlock colMin(int k)
-
colMax
public final MatrixBlock colMax()
Wrapper method for reduceall-colMin of a matrix.- Returns:
- A new MatrixBlock containing the column mins of this matrix
-
colMax
public final MatrixBlock colMax(int k)
-
max
public double max()
Wrapper method for reduceall-max of a matrix.- Returns:
- the maximum value of all values in the matrix
-
max
public MatrixBlock max(int k)
Wrapper method for reduceall-max of a matrix.- Parameters:
k
- the parallelization degree- Returns:
- the maximum value of all values in the matrix
-
sum
public double sum()
Wrapper method for reduceall-sum of a matrix.- Returns:
- Sum of the values in the matrix.
-
sum
public MatrixBlock sum(int k)
Wrapper method for reduceall-sum of a matrix parallel- Parameters:
k
- parallelization degree- Returns:
- Sum of the values in the matrix.
-
colSum
public MatrixBlock colSum()
Wrapper method for single threaded reduceall-colSum of a matrix.- Returns:
- A new MatrixBlock containing the column sums of this matrix.
-
rowSum
public final MatrixBlock rowSum()
Wrapper method for single threaded reduceall-rowSum of a matrix.- Returns:
- A new MatrixBlock containing the row sums of this matrix.
-
rowSum
public final MatrixBlock rowSum(int k)
Wrapper method for multi threaded reduceall-rowSum of a matrix.- Parameters:
k
- the number of threads allowed to be used.- Returns:
- A new MatrixBlock containing the row sums of this matrix.
-
sumSq
public double sumSq()
Wrapper method for reduceall-sumSq of a matrix.- Returns:
- Sum of the squared values in the matrix.
-
isInSparseFormat
public boolean isInSparseFormat()
Returns the current representation (true for sparse).- Specified by:
isInSparseFormat
in classMatrixValue
- Returns:
- true if sparse
-
isUltraSparse
public boolean isUltraSparse()
-
isUltraSparse
public boolean isUltraSparse(boolean checkNnz)
-
isSparsePermutationMatrix
public boolean isSparsePermutationMatrix()
-
evalSparseFormatInMemory
public boolean evalSparseFormatInMemory()
Evaluates if this matrix block should be in sparse format in memory. Note that this call does not change the representation - for this please call examSparsity.- Returns:
- true if matrix block should be in sparse format in memory
-
evalSparseFormatInMemory
public boolean evalSparseFormatInMemory(boolean allowCSR)
-
evalSparseFormatOnDisk
public boolean evalSparseFormatOnDisk()
Evaluates if this matrix block should be in sparse format on disk. This applies to any serialized matrix representation, i.e., when writing to in-memory buffer pool pages or writing to local fs or hdfs.- Returns:
- true if matrix block should be in sparse format on disk
-
examSparsity
public final void examSparsity()
Evaluates if this matrix block should be in sparse format in memory. Depending on the current representation, the state of the matrix block is changed to the right representation if necessary. Note that this consumes for the time of execution memory for both representations. Allowing CSR format is default for this operation.
-
examSparsity
public final void examSparsity(int k)
Evaluates if this matrix block should be in sparse format in memory. Depending on the current representation, the state of the matrix block is changed to the right representation if necessary. Note that this consumes for the time of execution memory for both representations. Allowing CSR format is default for this operation.- Parameters:
k
- parallelization degree
-
examSparsity
public final void examSparsity(boolean allowCSR)
Evaluates if this matrix block should be in sparse format in memory. Depending on the current representation, the state of the matrix block is changed to the right representation if necessary. Note that this consumes for the time of execution memory for both representations.- Parameters:
allowCSR
- allow CSR format on dense to sparse conversion
-
examSparsity
public void examSparsity(boolean allowCSR, int k)
Evaluates if this matrix block should be in sparse format in memory. Depending on the current representation, the state of the matrix block is changed to the right representation if necessary. Note that this consumes for the time of execution memory for both representations.- Parameters:
allowCSR
- allow CSR format on dense to sparse conversionk
- parallelization degree
-
evalSparseFormatInMemory
public static boolean evalSparseFormatInMemory(DataCharacteristics dc)
-
evalSparseFormatInMemory
public static boolean evalSparseFormatInMemory(long nrows, long ncols, long nnz)
Evaluates if a matrix block with the given characteristics should be in sparse format in memory.- Parameters:
nrows
- number of rowsncols
- number of columnsnnz
- number of non-zeros- Returns:
- true if matrix block shold be in sparse format in memory
-
evalSparseFormatInMemory
public static boolean evalSparseFormatInMemory(long nrows, long ncols, long nnz, boolean allowCSR)
-
evalSparseFormatOnDisk
public static boolean evalSparseFormatOnDisk(long nrows, long ncols, long nnz)
Evaluates if a matrix block with the given characteristics should be in sparse format on disk (or in any other serialized representation).- Parameters:
nrows
- number of rowsncols
- number of columnsnnz
- number of non-zeros- Returns:
- true if matrix block shold be in sparse format on disk
-
denseToSparse
public final void denseToSparse(boolean allowCSR)
-
denseToSparse
public void denseToSparse(boolean allowCSR, int k)
-
sparseToDense
public final void sparseToDense()
-
sparseToDense
public void sparseToDense(int k)
-
recomputeNonZeros
public long recomputeNonZeros()
Recomputes and materializes the number of non-zero values of the entire matrix block.- Returns:
- number of non-zeros
-
recomputeNonZeros
public long recomputeNonZeros(int k)
Recompute the number of nonZero values in parallel- Parameters:
k
- the paralelization degree- Returns:
- the number of non zeros
-
recomputeNonZeros
public long recomputeNonZeros(int rl, int ru)
-
recomputeNonZeros
public long recomputeNonZeros(int rl, int ru, int cl, int cu)
Recomputes the number of non-zero values of a specified range of the matrix block. NOTE: This call does not materialize the compute result in any form.- Parameters:
rl
- row lower index, 0-based, inclusiveru
- row upper index, 0-based, inclusivecl
- column lower index, 0-based, inclusivecu
- column upper index, 0-based, inclusive- Returns:
- the number of non-zero values
-
checkNonZeros
public void checkNonZeros()
Basic debugging primitive to check correctness of nnz. This method is not intended for production use.
-
checkSparseRows
public void checkSparseRows()
-
checkSparseRows
public void checkSparseRows(int rl, int ru)
Basic debugging primitive to check sparse block column ordering. This method is not intended for production use.- Parameters:
rl
- row lower bound (inclusive)ru
- row upper bound (exclusive)
-
copy
public void copy(MatrixValue thatValue)
Description copied from class:MatrixValue
Copy that MatrixValue into this MatrixValue. If the MatrixValue is a MatrixBlock evaluate the sparsity of the original matrix, and copy into either a sparse or a dense matrix.- Specified by:
copy
in classMatrixValue
- Parameters:
thatValue
- object to copy the values into.
-
copy
public void copy(MatrixValue thatValue, boolean sp)
Description copied from class:MatrixValue
Copy that MatrixValue into this MatrixValue. But select sparse destination block depending on boolean parameter.- Specified by:
copy
in classMatrixValue
- Parameters:
thatValue
- object to copy the values into.sp
- boolean specifying if output should be forced sparse or dense. (only applicable if the 'that' is a MatrixBlock)
-
copyShallow
public MatrixBlock copyShallow(MatrixBlock that)
-
putInto
public void putInto(MatrixBlock target, int rowOffset, int colOffset, boolean sparseCopyShallow)
Method for copying this matrix into a target matrix. Note that this method does not maintain number of non zero values. The method should output into the allocated block type of the target, therefore before any calls an appropriate block must be allocated. CSR sparse format is not supported. If allocating into a sparse matrix MCSR block the rows have to be sorted afterwards with a call to target.sortSparseRows()- Parameters:
target
- Target MatrixBlock, that can be allocated dense or sparserowOffset
- The Row offset to allocate into.colOffset
- The column offset to allocate into.sparseCopyShallow
- If the output is sparse, and shallow copy of rows is allowed from this block
-
copy
public void copy(int rl, int ru, int cl, int cu, MatrixBlock src, boolean awareDestNZ)
In-place copy of matrix src into the index range of the existing current matrix. Note that removal of existing nnz in the index range and nnz maintenance is only done if 'awareDestNZ=true',- Parameters:
rl
- row lower index, 0-basedru
- row upper index, 0-based, inclusivecl
- column lower index, 0-basedcu
- column upper index, 0-based, inclusivesrc
- matrix blockawareDestNZ
- true, forces (1) to remove existing non-zeros in the index range of the destination if not present in src and (2) to internally maintain nnz false, assume empty index range in destination and do not maintain nnz (the invoker is responsible to recompute nnz after all copies are done)
-
merge
public MatrixBlock merge(MatrixBlock that, boolean appendOnly)
Description copied from interface:CacheBlock
Merge disjoint: merges all non-zero values of the given input into the current block. Note that this method does NOT check for overlapping entries; it's the callers responsibility of ensuring disjoint blocks. The appendOnly parameter is only relevant for sparse target blocks; if true, we only append values and do not sort sparse rows for each call; this is useful whenever we merge iterators of matrix blocks into one target block.- Specified by:
merge
in interfaceCacheBlock<MatrixBlock>
- Parameters:
that
- cache blockappendOnly
- Indicate if the merger can be append only on sparse rows.- Returns:
- the merged group, in most implementations 'this' is modified.
-
merge
public MatrixBlock merge(MatrixBlock that, boolean appendOnly, boolean par)
-
merge
public MatrixBlock merge(MatrixBlock that, boolean appendOnly, boolean par, boolean deep)
-
readFields
public void readFields(DataInput in) throws IOException
- Specified by:
readFields
in interfaceorg.apache.hadoop.io.Writable
- Throws:
IOException
-
write
public void write(DataOutput out) throws IOException
- Specified by:
write
in interfaceorg.apache.hadoop.io.Writable
- Throws:
IOException
-
readExternal
public void readExternal(ObjectInput is) throws IOException
Redirects the default java serialization via externalizable to our default hadoop writable serialization for efficient broadcast/rdd deserialization.- Specified by:
readExternal
in interfaceExternalizable
- Parameters:
is
- object input- Throws:
IOException
- if IOException occurs
-
writeExternal
public void writeExternal(ObjectOutput os) throws IOException
Redirects the default java serialization via externalizable to our default hadoop writable serialization for efficient broadcast/rdd serialization.- Specified by:
writeExternal
in interfaceExternalizable
- Parameters:
os
- object output- Throws:
IOException
- if IOException occurs
-
getExactSizeOnDisk
public long getExactSizeOnDisk()
NOTE: The used estimates must be kept consistent with the respective write functions.- Returns:
- exact size on disk
-
getHeaderSize
public static long getHeaderSize()
-
estimateSizeInMemory
public long estimateSizeInMemory()
-
estimateSizeInMemory
public static long estimateSizeInMemory(long nrows, long ncols, double sparsity)
-
estimateSizeInMemory
public static long estimateSizeInMemory(DataCharacteristics dc)
-
estimateSizeInMemory
public static long estimateSizeInMemory(long nrows, long ncols, long nnz)
-
estimateSizeDenseInMemory
public long estimateSizeDenseInMemory()
-
estimateSizeDenseInMemory
public static long estimateSizeDenseInMemory(long nrows, long ncols)
-
estimateSizeSparseInMemory
public long estimateSizeSparseInMemory()
-
estimateSizeSparseInMemory
public static long estimateSizeSparseInMemory(long nrows, long ncols, double sparsity)
-
estimateSizeSparseInMemory
public static long estimateSizeSparseInMemory(long nrows, long ncols, double sparsity, boolean allowCSR)
-
estimateSizeSparseInMemory
public long estimateSizeSparseInMemory(SparseBlock.Type stype)
-
estimateSizeSparseInMemory
public static long estimateSizeSparseInMemory(long nrows, long ncols, double sparsity, SparseBlock.Type stype)
-
estimateSizeOnDisk
public long estimateSizeOnDisk()
-
estimateSizeOnDisk
public static long estimateSizeOnDisk(long nrows, long ncols, long nnz)
-
getInMemorySize
public long getInMemorySize()
Description copied from interface:CacheBlock
Get the in-memory size in bytes of the cache block.- Specified by:
getInMemorySize
in interfaceCacheBlock<MatrixBlock>
- Returns:
- in-memory size in bytes of cache block
-
getExactSerializedSize
public long getExactSerializedSize()
Description copied from interface:CacheBlock
Get the exact serialized size in bytes of the cache block.- Specified by:
getExactSerializedSize
in interfaceCacheBlock<MatrixBlock>
- Returns:
- exact serialized size in bytes of cache block
-
isShallowSerialize
public boolean isShallowSerialize()
Description copied from interface:CacheBlock
Indicates if the cache block is subject to shallow serialized, which is generally true if in-memory size and serialized size are almost identical allowing to avoid unnecessary deep serialize.- Specified by:
isShallowSerialize
in interfaceCacheBlock<MatrixBlock>
- Returns:
- true if shallow serialized
-
isShallowSerialize
public boolean isShallowSerialize(boolean inclConvert)
Description copied from interface:CacheBlock
Indicates if the cache block is subject to shallow serialized, which is generally true if in-memory size and serialized size are almost identical allowing to avoid unnecessary deep serialize.- Specified by:
isShallowSerialize
in interfaceCacheBlock<MatrixBlock>
- Parameters:
inclConvert
- if true report blocks as shallow serialize that are currently not amenable but can be brought into an amenable form viatoShallowSerializeBlock
.- Returns:
- true if shallow serialized
-
toShallowSerializeBlock
public void toShallowSerializeBlock()
Description copied from interface:CacheBlock
Converts a cache block that is not shallow serializable into a form that is shallow serializable. This methods has no affect if the given cache block is not amenable.- Specified by:
toShallowSerializeBlock
in interfaceCacheBlock<MatrixBlock>
-
compactEmptyBlock
public void compactEmptyBlock()
Description copied from interface:CacheBlock
Free unnecessarily allocated empty block.- Specified by:
compactEmptyBlock
in interfaceCacheBlock<MatrixBlock>
-
scalarOperations
public MatrixBlock scalarOperations(ScalarOperator op, MatrixValue result)
- Specified by:
scalarOperations
in classMatrixValue
-
unaryOperations
public final MatrixBlock unaryOperations(UnaryOperator op)
-
unaryOperations
public MatrixBlock unaryOperations(UnaryOperator op, MatrixValue result)
- Specified by:
unaryOperations
in classMatrixValue
-
binaryOperations
public final MatrixBlock binaryOperations(BinaryOperator op, MatrixValue thatValue)
-
binaryOperations
public MatrixBlock binaryOperations(BinaryOperator op, MatrixValue thatValue, MatrixValue result)
- Specified by:
binaryOperations
in classMatrixValue
-
binaryOperationsInPlace
public MatrixBlock binaryOperationsInPlace(BinaryOperator op, MatrixValue thatValue)
- Specified by:
binaryOperationsInPlace
in classMatrixValue
-
ternaryOperations
public MatrixBlock ternaryOperations(TernaryOperator op, MatrixBlock m2, MatrixBlock m3, MatrixBlock ret)
-
ternaryOperationCheck
public static void ternaryOperationCheck(boolean s1, boolean s2, boolean s3, int m, int r1, int r2, int r3, int n, int c1, int c2, int c3)
-
incrementalAggregate
public void incrementalAggregate(AggregateOperator aggOp, MatrixValue correction, MatrixValue newWithCorrection, boolean deep)
- Specified by:
incrementalAggregate
in classMatrixValue
-
incrementalAggregate
public void incrementalAggregate(AggregateOperator aggOp, MatrixValue newWithCorrection)
- Specified by:
incrementalAggregate
in classMatrixValue
-
reorgOperations
public MatrixBlock reorgOperations(ReorgOperator op, MatrixValue ret, int startRow, int startColumn, int length)
- Specified by:
reorgOperations
in classMatrixValue
-
append
public final MatrixBlock append(MatrixBlock that)
Append that matrix to this matrix, while allocating a new matrix. Default is cbind making the matrix "wider"- Parameters:
that
- the other matrix to append- Returns:
- A new MatrixBlock object with the appended result
-
append
public final MatrixBlock append(MatrixBlock that, boolean cbind)
Append that matrix to this matrix, while allocating a new matrix. cbind true makes the matrix "wider" while cbind false make it "taller"- Parameters:
that
- the other matrix to appendcbind
- if binding on columns or rows- Returns:
- a new MatrixBlock object with the appended result
-
append
public final MatrixBlock append(MatrixBlock that, MatrixBlock ret)
Append that matrix to this matrix. Default is cbind making the matrix "wider"- Parameters:
that
- the other matrix to appendret
- the output matrix to modify, (is also returned)- Returns:
- the ret MatrixBlock object with the appended result
-
append
public static MatrixBlock append(List<MatrixBlock> that, MatrixBlock ret, boolean cbind, int k)
-
append
public final MatrixBlock append(MatrixBlock that, MatrixBlock ret, boolean cbind)
Append that matrix to this matrix. cbind true makes the matrix "wider" while cbind false make it "taller"- Parameters:
that
- the other matrix to appendret
- the output matrix to modify, (is also returned)cbind
- if binding on columns or rows- Returns:
- the ret MatrixBlock object with the appended result
-
append
public MatrixBlock append(MatrixBlock[] that, MatrixBlock result, boolean cbind)
Append that list of matrixes to this matrix. cbind true makes the matrix "wider" while cbind false make it "taller"- Parameters:
that
- a list of matrices to append in orderresult
- the output matrix to modify, (is also returned)cbind
- if binding on columns or rows- Returns:
- the ret MatrixBlock object with the appended result
-
checkDimensionsForAppend
public void checkDimensionsForAppend(MatrixBlock[] in, boolean cbind)
-
naryOperations
public static MatrixBlock naryOperations(Operator op, MatrixBlock[] matrices, ScalarObject[] scalars, MatrixBlock ret)
-
transposeSelfMatrixMultOperations
public MatrixBlock transposeSelfMatrixMultOperations(MatrixBlock out, MMTSJ.MMTSJType tstype)
-
transposeSelfMatrixMultOperations
public MatrixBlock transposeSelfMatrixMultOperations(MatrixBlock out, MMTSJ.MMTSJType tstype, int k)
-
chainMatrixMultOperations
public MatrixBlock chainMatrixMultOperations(MatrixBlock v, MatrixBlock w, MatrixBlock out, MapMultChain.ChainType ctype)
-
chainMatrixMultOperations
public MatrixBlock chainMatrixMultOperations(MatrixBlock v, MatrixBlock w, MatrixBlock out, MapMultChain.ChainType ctype, int k)
-
permutationMatrixMultOperations
public void permutationMatrixMultOperations(MatrixValue m2Val, MatrixValue out1Val, MatrixValue out2Val)
-
permutationMatrixMultOperations
public void permutationMatrixMultOperations(MatrixValue m2Val, MatrixValue out1Val, MatrixValue out2Val, int k)
-
leftIndexingOperations
public final MatrixBlock leftIndexingOperations(MatrixBlock rhsMatrix, IndexRange ixrange, MatrixBlock ret, MatrixObject.UpdateType update)
-
leftIndexingOperations
public MatrixBlock leftIndexingOperations(MatrixBlock rhsMatrix, int rl, int ru, int cl, int cu, MatrixBlock ret, MatrixObject.UpdateType update)
-
leftIndexingOperations
public MatrixBlock leftIndexingOperations(ScalarObject scalar, int rl, int cl, MatrixBlock ret, MatrixObject.UpdateType update)
Explicitly allow left indexing for scalars. Note: This operation is now 0-based. * Operations to be performed: 1) result=this; 2) result[row,column] = scalar.getDoubleValue();- Parameters:
scalar
- scalar objectrl
- row lowercl
- column lowerret
- ?update
- ?- Returns:
- matrix block
-
slice
public final MatrixBlock slice(IndexRange ixrange, MatrixBlock ret)
Description copied from interface:CacheBlock
Slice a sub block out of the current block and write into the given output block. This method returns the passed instance if not null.- Specified by:
slice
in interfaceCacheBlock<MatrixBlock>
- Parameters:
ixrange
- index range inclusiveret
- outputBlock- Returns:
- sub-block of cache block
-
slice
public final MatrixBlock slice(int rl, int ru)
Description copied from interface:CacheBlock
Slice a sub block out of the current block and write into the given output block. This method returns the passed instance if not null.- Specified by:
slice
in interfaceCacheBlock<MatrixBlock>
- Parameters:
rl
- row lowerru
- row upper inclusive- Returns:
- sub-block of cache block
-
slice
public final MatrixBlock slice(int rl, int ru, boolean deep)
Description copied from interface:CacheBlock
Slice a sub block out of the current block and write into the given output block. This method returns the passed instance if not null.- Specified by:
slice
in interfaceCacheBlock<MatrixBlock>
- Parameters:
rl
- row lowerru
- row upper inclusivedeep
- enforce deep-copy- Returns:
- sub-block of cache block
-
slice
public final MatrixBlock slice(int rl, int ru, int cl, int cu)
Description copied from interface:CacheBlock
Slice a sub block out of the current block and write into the given output block. This method returns the passed instance if not null.- Specified by:
slice
in interfaceCacheBlock<MatrixBlock>
- Parameters:
rl
- row lowerru
- row upper inclusivecl
- column lowercu
- column upper inclusive- Returns:
- sub-block of cache block
-
slice
public final MatrixBlock slice(int rl, int ru, int cl, int cu, MatrixBlock ret)
Description copied from interface:CacheBlock
Slice a sub block out of the current block and write into the given output block. This method returns the passed instance if not null.- Specified by:
slice
in interfaceCacheBlock<MatrixBlock>
- Parameters:
rl
- row lowerru
- row upper inclusivecl
- column lowercu
- column upper inclusiveret
- cache block- Returns:
- sub-block of cache block
-
slice
public final MatrixBlock slice(int rl, int ru, int cl, int cu, boolean deep)
Description copied from interface:CacheBlock
Slice a sub block out of the current block and write into the given output block. This method returns the passed instance if not null.- Specified by:
slice
in interfaceCacheBlock<MatrixBlock>
- Parameters:
rl
- row lowerru
- row upper inclusivecl
- column lowercu
- column upper inclusivedeep
- enforce deep-copy- Returns:
- sub-block of cache block
-
slice
public MatrixBlock slice(int rl, int ru, int cl, int cu, boolean deep, MatrixBlock ret)
Description copied from interface:CacheBlock
Slice a sub block out of the current block and write into the given output block. This method returns the passed instance if not null.- Specified by:
slice
in interfaceCacheBlock<MatrixBlock>
- Parameters:
rl
- row lowerru
- row upper inclusivecl
- column lowercu
- column upper inclusivedeep
- enforce deep-copyret
- cache block- Returns:
- sub-block of cache block
-
slice
public void slice(ArrayList<IndexedMatrixValue> outlist, IndexRange range, int rowCut, int colCut, int blen, int boundaryRlen, int boundaryClen)
Description copied from class:MatrixValue
Slice out up to 4 matrixBlocks that are separated by the row and col Cuts. This is used in the context of spark execution to distributed sliced out matrix blocks of correct block size.- Specified by:
slice
in classMatrixValue
- Parameters:
outlist
- The output matrix blocks that is extracted from the matrixrange
- An index range containing overlapping information.rowCut
- The row to cut and split the matrix.colCut
- The column to cut ans split the matrix.blen
- The Block size of the output matrices.boundaryRlen
- The row length of the edge case matrix block, used for the final blocks that does not have enough rows to construct a full block.boundaryClen
- The col length of the edge case matrix block, used for the final blocks that does not have enough cols to construct a full block.
-
append
public void append(MatrixValue v2, ArrayList<IndexedMatrixValue> outlist, int blen, boolean cbind, boolean m2IsLast, int nextNCol)
- Specified by:
append
in classMatrixValue
-
zeroOutOperations
public MatrixBlock zeroOutOperations(MatrixValue result, IndexRange range, boolean complementary)
- Specified by:
zeroOutOperations
in classMatrixValue
-
aggregateUnaryOperations
public MatrixBlock aggregateUnaryOperations(AggregateUnaryOperator op, MatrixValue result, int blen, MatrixIndexes indexesIn, boolean inCP)
- Specified by:
aggregateUnaryOperations
in classMatrixValue
-
dropLastRowsOrColumns
public void dropLastRowsOrColumns(Types.CorrectionLocationType correctionLocation)
-
cmOperations
public CM_COV_Object cmOperations(CMOperator op)
-
checkCMOperations
public static void checkCMOperations(MatrixBlock mb, CMOperator op)
-
cmOperations
public CM_COV_Object cmOperations(CMOperator op, MatrixBlock weights)
-
covOperations
public CM_COV_Object covOperations(COVOperator op, MatrixBlock that)
-
covOperations
public CM_COV_Object covOperations(COVOperator op, MatrixBlock that, MatrixBlock weights)
-
sortOperations
public final MatrixBlock sortOperations()
-
sortOperations
public final MatrixBlock sortOperations(MatrixValue weights)
-
sortOperations
public MatrixBlock sortOperations(MatrixValue weights, MatrixBlock result)
-
sortOperations
public MatrixBlock sortOperations(MatrixValue weights, MatrixBlock result, int k)
-
interQuartileMean
public double interQuartileMean()
-
computeIQMCorrection
public static double computeIQMCorrection(double sum, double sum_wt, double q25Part, double q25Val, double q75Part, double q75Val)
-
pickValues
public MatrixBlock pickValues(MatrixValue quantiles, MatrixValue ret)
-
median
public double median()
-
pickValue
public final double pickValue(double quantile)
-
pickValue
public double pickValue(double quantile, boolean average)
-
sumWeightForQuantile
public double sumWeightForQuantile()
In a given two column matrix, the second column denotes weights. This function computes the total weight- Returns:
- sum weight for quantile
-
aggregateBinaryOperations
public final MatrixBlock aggregateBinaryOperations(MatrixBlock m1, MatrixBlock m2, AggregateBinaryOperator op)
-
aggregateBinaryOperations
public MatrixBlock aggregateBinaryOperations(MatrixBlock m1, MatrixBlock m2, MatrixBlock ret, AggregateBinaryOperator op)
-
aggregateTernaryOperations
public static MatrixBlock aggregateTernaryOperations(MatrixBlock m1, MatrixBlock m2, MatrixBlock m3, MatrixBlock ret, AggregateTernaryOperator op, boolean inCP)
-
uaggouterchainOperations
public MatrixBlock uaggouterchainOperations(MatrixBlock mbLeft, MatrixBlock mbRight, MatrixBlock mbOut, BinaryOperator bOp, AggregateUnaryOperator uaggOp)
-
groupedAggOperations
public final MatrixBlock groupedAggOperations(MatrixValue tgt, MatrixValue wghts, MatrixValue ret, int ngroups, Operator op)
Invocation from CP instructions. The aggregate is computed on the groups object against target and weights. Notes: * The computed number of groups is reused for multiple invocations with different target. * This implementation supports that the target is passed as column or row vector, in case of row vectors we also use sparse-safe implementations for sparse safe aggregation operators.- Parameters:
tgt
- ?wghts
- ?ret
- ?ngroups
- ?op
- operator- Returns:
- matrix block
-
groupedAggOperations
public MatrixBlock groupedAggOperations(MatrixValue tgt, MatrixValue wghts, MatrixValue ret, int ngroups, Operator op, int k)
-
removeEmptyOperations
public MatrixBlock removeEmptyOperations(MatrixBlock ret, boolean rows, boolean emptyReturn, MatrixBlock select)
-
removeEmptyOperations
public final MatrixBlock removeEmptyOperations(MatrixBlock ret, boolean rows, boolean emptyReturn)
-
rexpandOperations
public MatrixBlock rexpandOperations(MatrixBlock ret, double max, boolean rows, boolean cast, boolean ignore, int k)
-
replaceOperations
public MatrixBlock replaceOperations(MatrixValue result, double pattern, double replacement)
- Specified by:
replaceOperations
in classMatrixValue
-
extractTriangular
public MatrixBlock extractTriangular(MatrixBlock ret, boolean lower, boolean diag, boolean values)
-
ctableOperations
public void ctableOperations(Operator op, double scalarThat, MatrixValue that2Val, CTableMap resultMap, MatrixBlock resultBlock)
D = ctable(A,v2,W) this <- A; scalarThat <- v2; that2 <- W; result <- D (i1,j1,v1) from input1 (this) (v2) from sclar_input2 (scalarThat) (i3,j3,w) from input3 (that2)- Specified by:
ctableOperations
in classMatrixValue
-
ctableOperations
public void ctableOperations(Operator op, double scalarThat, double scalarThat2, CTableMap resultMap, MatrixBlock resultBlock)
D = ctable(A,v2,w) this <- A; scalar_that <- v2; scalar_that2 <- w; result <- D (i1,j1,v1) from input1 (this) (v2) from sclar_input2 (scalarThat) (w) from scalar_input3 (scalarThat2)- Specified by:
ctableOperations
in classMatrixValue
-
ctableOperations
public void ctableOperations(Operator op, MatrixIndexes ix1, double scalarThat, boolean left, int blen, CTableMap resultMap, MatrixBlock resultBlock)
Specific ctable case of ctable(seq(...),X), where X is the only matrix input. The 'left' input parameter specifies if the seq appeared on the left, otherwise it appeared on the right.- Specified by:
ctableOperations
in classMatrixValue
-
ctableOperations
public void ctableOperations(Operator op, MatrixValue thatVal, double scalarThat2, boolean ignoreZeros, CTableMap resultMap, MatrixBlock resultBlock)
D = ctable(A,B,w) this <- A; that <- B; scalar_that2 <- w; result <- D (i1,j1,v1) from input1 (this) (i1,j1,v2) from input2 (that) (w) from scalar_input3 (scalarThat2) NOTE: This method supports both vectors and matrices. In case of matrices and ignoreZeros=true we can also use a sparse-safe implementation- Specified by:
ctableOperations
in classMatrixValue
-
ctableSeqOperations
public MatrixBlock ctableSeqOperations(MatrixValue thatMatrix, double thatScalar, MatrixBlock ret, boolean updateClen)
- Parameters:
thatMatrix
- matrix valuethatScalar
- scalar doubleret
- result matrix blockupdateClen
- when this matrix already has the desired number of columns updateClen can be set to false- Returns:
- result matrix block
-
ctableSeqOperations
public final MatrixBlock ctableSeqOperations(MatrixValue thatMatrix, double thatScalar, MatrixBlock resultBlock)
D = ctable(seq,A,w) this <- seq; thatMatrix <- A; thatScalar <- w; result <- D (i1,j1,v1) from input1 (this) (i1,j1,v2) from input2 (that) (w) from scalar_input3 (scalarThat2)- Parameters:
thatMatrix
- matrix valuethatScalar
- scalar doubleresultBlock
- result matrix block- Returns:
- resultBlock
-
ctableOperations
public final void ctableOperations(Operator op, MatrixValue thatVal, MatrixValue that2Val, CTableMap resultMap)
D = ctable(A,B,W) this <- A; that <- B; that2 <- W; result <- D (i1,j1,v1) from input1 (this) (i1,j1,v2) from input2 (that) (i1,j1,w) from input3 (that2)- Parameters:
op
- operatorthatVal
- matrix value 1that2Val
- matrix value 2resultMap
- table map
-
ctableOperations
public void ctableOperations(Operator op, MatrixValue thatVal, MatrixValue that2Val, CTableMap resultMap, MatrixBlock resultBlock)
- Specified by:
ctableOperations
in classMatrixValue
-
quaternaryOperations
public final MatrixBlock quaternaryOperations(QuaternaryOperator qop, MatrixBlock um, MatrixBlock vm, MatrixBlock wm, MatrixBlock out)
-
quaternaryOperations
public MatrixBlock quaternaryOperations(QuaternaryOperator qop, MatrixBlock U, MatrixBlock V, MatrixBlock wm, MatrixBlock out, int k)
-
randOperations
public static MatrixBlock randOperations(int rows, int cols, double sparsity, double min, double max, String pdf, long seed)
Function to generate the random matrix with specified dimensions (block sizes are not specified).- Parameters:
rows
- number of rowscols
- number of columnssparsity
- sparsity as a percentagemin
- minimum valuemax
- maximum valuepdf
- pdfseed
- random seed- Returns:
- matrix block
-
randOperations
public static MatrixBlock randOperations(int rows, int cols, double sparsity, double min, double max, String pdf, long seed, int k)
Function to generate the random matrix with specified dimensions (block sizes are not specified).- Parameters:
rows
- number of rowscols
- number of columnssparsity
- sparsity as a percentagemin
- minimum valuemax
- maximum valuepdf
- pdfseed
- random seedk
- The number of threads in the operation- Returns:
- matrix block
-
randOperations
public static MatrixBlock randOperations(RandomMatrixGenerator rgen, long seed)
Function to generate the random matrix with specified dimensions and block dimensions.- Parameters:
rgen
- random matrix generatorseed
- seed value- Returns:
- matrix block
-
randOperations
public static MatrixBlock randOperations(RandomMatrixGenerator rgen, long seed, int k)
Function to generate the random matrix with specified dimensions and block dimensions.- Parameters:
rgen
- random matrix generatorseed
- seed valuek
- The number of threads to use in the operation- Returns:
- matrix block
-
randOperationsInPlace
public MatrixBlock randOperationsInPlace(RandomMatrixGenerator rgen, org.apache.commons.math3.random.Well1024a bigrand, long bSeed)
Function to generate a matrix of random numbers. This is invoked both from CP as well as from MR. In case of CP, it generates an entire matrix block-by-block. Abigrand
is passed so that block-level seeds are generated internally. In case of MR, it generates a single block for given block-level seedbSeed
. When pdf="uniform", cell values are drawn from uniform distribution in range[min,max]
. When pdf="normal", cell values are drawn from standard normal distribution N(0,1). The range of generated values will always be (-Inf,+Inf).- Parameters:
rgen
- random matrix generatorbigrand
- ?bSeed
- seed value- Returns:
- matrix block
-
randOperationsInPlace
public MatrixBlock randOperationsInPlace(RandomMatrixGenerator rgen, org.apache.commons.math3.random.Well1024a bigrand, long bSeed, int k)
Function to generate a matrix of random numbers. This is invoked both from CP as well as from MR. In case of CP, it generates an entire matrix block-by-block. Abigrand
is passed so that block-level seeds are generated internally. In case of MR, it generates a single block for given block-level seedbSeed
. When pdf="uniform", cell values are drawn from uniform distribution in range[min,max]
. When pdf="normal", cell values are drawn from standard normal distribution N(0,1). The range of generated values will always be (-Inf,+Inf).- Parameters:
rgen
- random matrix generatorbigrand
- ?bSeed
- seed valuek
- ?- Returns:
- matrix block
-
seqOperations
public static MatrixBlock seqOperations(double from, double to, double incr)
Method to generate a sequence according to the given parameters. The generated sequence is always in dense format. Both end points specifiedfrom
andto
must be included in the generated sequence i.e., [from,to] both inclusive. Note that,to
is included only if (to-from) is perfectly divisible byincr
. For example, seq(0,1,0.5) generates (0.0 0.5 1.0) whereas seq(0,1,0.6) generates (0.0 0.6) but not (0.0 0.6 1.0)- Parameters:
from
- ?to
- ?incr
- ?- Returns:
- matrix block
-
seqOperationsInPlace
public MatrixBlock seqOperationsInPlace(double from, double to, double incr)
-
sampleOperations
public static MatrixBlock sampleOperations(long range, int size, boolean replace, long seed)
-
isThreadSafe
public boolean isThreadSafe()
Indicates if concurrent modifications of disjoint rows are thread-safe.- Returns:
- true if thread-safe
-
isThreadSafe
public static boolean isThreadSafe(boolean sparse)
Indicates if concurrent modifications of disjoint rows are thread-safe.- Parameters:
sparse
- true if sparse- Returns:
- true if ?
-
checkNaN
public void checkNaN()
Checks for existing NaN values in the matrix block.- Throws:
DMLRuntimeException
- if the blocks contains at least one NaN.
-
compareTo
public final int compareTo(Object arg0)
- Specified by:
compareTo
in interfaceComparable
-
equals
public final boolean equals(MatrixBlock arg0)
Analyze if the matrixBlocks are equivalent, the comparsion supports if the differnet sides are differently allocated such as sparse and dense.The implementations adhere to the properties of equals of:
- Reflective
- Symmetric
- Transitive
- Consistent
- Parameters:
arg0
- MatrixBlock to compare- Returns:
- If the matrices are equivalent
-
getDouble
public double getDouble(int r, int c)
Description copied from interface:CacheBlock
Returns the double value at the passed row and column. If the value is missing 0 is returned.- Specified by:
getDouble
in interfaceCacheBlock<MatrixBlock>
- Parameters:
r
- row of the valuec
- column of the value- Returns:
- double value at the passed row and column
-
getDoubleNaN
public double getDoubleNaN(int r, int c)
Description copied from interface:CacheBlock
Returns the double value at the passed row and column. If the value is missing NaN is returned.- Specified by:
getDoubleNaN
in interfaceCacheBlock<MatrixBlock>
- Parameters:
r
- row of the valuec
- column of the value- Returns:
- double value at the passed row and column
-
getString
public String getString(int r, int c)
Description copied from interface:CacheBlock
Returns the string of the value at the passed row and column. If the value is missing or NaN, null is returned.- Specified by:
getString
in interfaceCacheBlock<MatrixBlock>
- Parameters:
r
- row of the valuec
- column of the value- Returns:
- string of the value at the passed row and column
-
-