| Modifier and Type | Method and Description | 
|---|---|
static Data | 
MLContextUtil.convertInputType(String parameterName,
                Object parameterValue)
Convert input types to internal SystemDS representations 
 | 
static Data | 
MLContextUtil.convertInputType(String parameterName,
                Object parameterValue,
                Metadata metadata)
Convert input types to internal SystemDS representations 
 | 
Data | 
MLResults.getData(String outputName)
Obtain an output as a  
Data object. | 
| Modifier and Type | Method and Description | 
|---|---|
FederatedResponse | 
RewriteFederatedExecution.PrivacyConstraintRetriever.execute(ExecutionContext ec,
       Data... data)
Reads metadata JSON object, parses privacy constraint and returns the constraint in FederatedResponse. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
Data | 
LocalVariableMap.get(String name)
Retrieves the data object given its name. 
 | 
Data | 
LocalVariableMap.remove(String name)  | 
| Modifier and Type | Method and Description | 
|---|---|
Set<Map.Entry<String,Data>> | 
LocalVariableMap.entrySet()  | 
| Modifier and Type | Method and Description | 
|---|---|
boolean | 
LocalVariableMap.hasReferences(Data d)  | 
void | 
LocalVariableMap.put(String name,
   Data val)
Adds a new (name, value) pair to the variable map, or replaces an old pair with
 the same name. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
void | 
LocalVariableMap.putAll(Map<String,Data> vals)  | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
CacheableData<T extends CacheBlock>
Each object of this class is a cache envelope for some large piece of data
 called "cache block". 
 | 
class  | 
FrameObject  | 
class  | 
MatrixObject
Represents a matrix in control program. 
 | 
class  | 
TensorObject  | 
| Modifier and Type | Method and Description | 
|---|---|
Data | 
ExecutionContext.getVariable(CPOperand operand)  | 
Data | 
ExecutionContext.getVariable(String name)  | 
Data | 
ExecutionContext.removeVariable(String name)  | 
| Modifier and Type | Method and Description | 
|---|---|
void | 
ExecutionContext.cleanupDataObject(Data dat)  | 
void | 
ExecutionContext.setVariable(String name,
           Data val)  | 
| Modifier and Type | Method and Description | 
|---|---|
abstract FederatedResponse | 
FederatedUDF.execute(ExecutionContext ec,
       Data... data)
Execute the user-defined function on a set of data objects
 (e.g., matrix objects, frame objects, or scalars), which are
 looked up by specified input IDs and passed in the same order. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
static void | 
ParamservUtils.cleanupData(ExecutionContext ec,
           Data data)  | 
| Modifier and Type | Method and Description | 
|---|---|
Data | 
FunctionObject.execute(Data in1,
       Data in2)  | 
Data | 
COV.execute(Data in1,
       Data in2)  | 
Data | 
CM.execute(Data in1,
       Data in2)
Combining stats from two partitions of the data. 
 | 
Data | 
FunctionObject.execute(Data in1,
       double in2)  | 
Data | 
KahanPlus.execute(Data in1,
       double in2)  | 
Data | 
KahanPlusSq.execute(Data kObj,
       double in)
Square the given term, then add to the existing sum using
 the Kahan summation algorithm. 
 | 
Data | 
CM.execute(Data in1,
       double in2)
Special case for weights w2==1 
 | 
Data | 
FunctionObject.execute(Data in1,
       double in2,
       double in3)  | 
Data | 
KahanPlus.execute(Data in1,
       double in2,
       double in3)  | 
Data | 
COV.execute(Data in1,
       double u,
       double v)
Special case for weights w2==1 
 | 
Data | 
KahanPlusSq.execute(Data kObj,
       double sum,
       double corr)
Add the given sum and correction factor to the existing
 sum in the KahanObject using the Kahan summation algorithm. 
 | 
Data | 
CM.execute(Data in1,
       double in2,
       double w2)
General case for arbitrary weights w2 
 | 
Data | 
Mean.execute(Data in1,
       double in2,
       double count)  | 
Data | 
COV.execute(Data in1,
       double u,
       double v,
       double w2)
General case for arbitrary weights w2 
 | 
| Modifier and Type | Method and Description | 
|---|---|
Data | 
FunctionObject.execute(Data in1,
       Data in2)  | 
Data | 
COV.execute(Data in1,
       Data in2)  | 
Data | 
CM.execute(Data in1,
       Data in2)
Combining stats from two partitions of the data. 
 | 
Data | 
FunctionObject.execute(Data in1,
       double in2)  | 
Data | 
KahanPlus.execute(Data in1,
       double in2)  | 
Data | 
KahanPlusSq.execute(Data kObj,
       double in)
Square the given term, then add to the existing sum using
 the Kahan summation algorithm. 
 | 
Data | 
CM.execute(Data in1,
       double in2)
Special case for weights w2==1 
 | 
Data | 
FunctionObject.execute(Data in1,
       double in2,
       double in3)  | 
Data | 
KahanPlus.execute(Data in1,
       double in2,
       double in3)  | 
Data | 
COV.execute(Data in1,
       double u,
       double v)
Special case for weights w2==1 
 | 
Data | 
KahanPlusSq.execute(Data kObj,
       double sum,
       double corr)
Add the given sum and correction factor to the existing
 sum in the KahanObject using the Kahan summation algorithm. 
 | 
Data | 
CM.execute(Data in1,
       double in2,
       double w2)
General case for arbitrary weights w2 
 | 
Data | 
Mean.execute(Data in1,
       double in2,
       double count)  | 
Data | 
COV.execute(Data in1,
       double u,
       double v,
       double w2)
General case for arbitrary weights w2 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
BooleanObject  | 
class  | 
CM_COV_Object  | 
class  | 
DoubleObject  | 
class  | 
IntObject  | 
class  | 
KahanObject  | 
class  | 
ListObject  | 
class  | 
ScalarObject  | 
class  | 
StringObject  | 
| Modifier and Type | Method and Description | 
|---|---|
Data | 
ListObject.getData(int ix)  | 
Data | 
ListObject.getData(String name)  | 
Data | 
ListObject.set(String name,
   Data data)  | 
Data | 
ListObject.set(String name,
   Data data,
   LineageItem li)  | 
Data | 
ListObject.slice(int ix)  | 
Data | 
ListObject.slice(String name)  | 
| Modifier and Type | Method and Description | 
|---|---|
List<Data> | 
ListObject.getData()  | 
| Modifier and Type | Method and Description | 
|---|---|
ListObject | 
ListObject.add(Data dat,
   LineageItem li)  | 
ListObject | 
ListObject.add(String name,
   Data dat,
   LineageItem li)  | 
boolean | 
ListObject.contains(Data d)  | 
ListObject | 
ListObject.set(int ix,
   Data data)  | 
ListObject | 
ListObject.set(int ix,
   Data data,
   LineageItem li)  | 
Data | 
ListObject.set(String name,
   Data data)  | 
Data | 
ListObject.set(String name,
   Data data,
   LineageItem li)  | 
| Constructor and Description | 
|---|
CPOperand(String name,
         Data dat)  | 
ListObject(Data[] data)  | 
ListObject(Data[] data,
          String[] names)  | 
| Constructor and Description | 
|---|
ListObject(List<Data> data)  | 
ListObject(List<Data> data,
          List<String> names)  | 
ListObject(List<Data> data,
          List<String> names,
          List<LineageItem> lineage)  | 
| Modifier and Type | Method and Description | 
|---|---|
FederatedResponse | 
MultiReturnParameterizedBuiltinFEDInstruction.CreateFrameEncoder.execute(ExecutionContext ec,
       Data... data)  | 
FederatedResponse | 
MultiReturnParameterizedBuiltinFEDInstruction.ExecuteFrameEncoder.execute(ExecutionContext ec,
       Data... data)  | 
FederatedResponse | 
ParameterizedBuiltinFEDInstruction.DecodeMatrix.execute(ExecutionContext ec,
       Data... data)  | 
FederatedResponse | 
ReorgFEDInstruction.Rdiag.execute(ExecutionContext ec,
       Data... data)  | 
FederatedResponse | 
ReorgFEDInstruction.DiagMatrix.execute(ExecutionContext ec,
       Data... data)  | 
| Modifier and Type | Method and Description | 
|---|---|
static Data | 
LineageRecomputeUtils.parseNComputeLineageTrace(String mainTrace,
                         String dedupPatches)  | 
| Modifier and Type | Method and Description | 
|---|---|
static boolean | 
LineageCacheConfig.isOutputFederated(Instruction inst,
                 Data data)  | 
| Modifier and Type | Method and Description | 
|---|---|
static Data | 
PrivacyMonitor.handlePrivacy(Data dataObject)
Throws DMLPrivacyException if privacy constraint is set to private or private aggregation. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
static Data | 
PrivacyMonitor.handlePrivacy(Data dataObject)
Throws DMLPrivacyException if privacy constraint is set to private or private aggregation. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
static Data | 
PrivacyPropagator.parseAndSetPrivacyConstraint(Data cd,
                            org.apache.wink.json4j.JSONObject mtd)
Parses the privacy constraint of the given metadata object
 and sets the field of the given Data if the privacy constraint is not null. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
static Data | 
PrivacyPropagator.parseAndSetPrivacyConstraint(Data cd,
                            org.apache.wink.json4j.JSONObject mtd)
Parses the privacy constraint of the given metadata object
 and sets the field of the given Data if the privacy constraint is not null. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
static List<Data> | 
AutoDiff.parseNComputeAutoDiffFromLineage(MatrixObject mo,
                                String mainTrace,
                                ArrayList<String> names,
                                ExecutionContext ec)  | 
| Modifier and Type | Method and Description | 
|---|---|
static String | 
ProgramConverter.serializeDataObject(String key,
                   Data dat)  | 
| Modifier and Type | Method and Description | 
|---|---|
static ListObject | 
AutoDiff.getBackward(MatrixObject mo,
           ArrayList<Data> lineage,
           ExecutionContext adec)  | 
Copyright © 2021 The Apache Software Foundation. All rights reserved.