Package | Description |
---|---|
org.apache.sysds.hops | |
org.apache.sysds.hops.codegen | |
org.apache.sysds.lops | |
org.apache.sysds.lops.compile | |
org.apache.sysds.parser | |
org.apache.sysds.runtime.instructions |
Modifier and Type | Method and Description |
---|---|
Lop |
DnnOp.constructDnnLops(Types.ExecType et,
ArrayList<Hop> inputs) |
Lop |
NaryOp.constructLops()
Construct the corresponding Lops for this Hop
|
Lop |
BinaryOp.constructLops() |
Lop |
AggUnaryOp.constructLops() |
Lop |
TernaryOp.constructLops() |
Lop |
ParameterizedBuiltinOp.constructLops() |
Lop |
UnaryOp.constructLops() |
Lop |
FunctionOp.constructLops() |
Lop |
LiteralOp.constructLops() |
Lop |
IndexingOp.constructLops() |
Lop |
LeftIndexingOp.constructLops() |
Lop |
DnnOp.constructLops() |
Lop |
ReorgOp.constructLops() |
Lop |
DataOp.constructLops() |
abstract Lop |
Hop.constructLops() |
Lop |
DataGenOp.constructLops() |
Lop |
QuaternaryOp.constructLops() |
Lop |
AggBinaryOp.constructLops()
NOTE: overestimated mem in case of transpose-identity matmult, but 3/2 at worst
and existing mem estimate advantageous in terms of consistency hops/lops,
and some special cases internally materialize the transpose for better cache locality
|
static Lop |
BinaryOp.constructSPAppendLop(Hop left,
Hop right,
Types.DataType dt,
Types.ValueType vt,
boolean cbind,
Hop current) |
static Lop |
Hop.createOffsetLop(Hop hop,
boolean repCols) |
Lop |
Hop.getLops() |
Modifier and Type | Method and Description |
---|---|
void |
Hop.setLops(Lop lops) |
Modifier and Type | Method and Description |
---|---|
Lop |
SpoofFusedOp.constructLops() |
Modifier and Type | Class and Description |
---|---|
class |
Append |
class |
AppendG
TODO Additional compiler enhancements:
1) Partial Shuffle Elimination - Any full or aligned blocks could be directly output from the mappers
to the result index.
|
class |
AppendGAlignedSP |
class |
AppendM |
class |
AppendR |
class |
Binary
Lop to perform binary operation.
|
class |
BinaryM
Lop to perform binary operation.
|
class |
BinaryScalar
Lop to perform binary scalar operations.
|
class |
BinaryUAggChain |
class |
CentralMoment
Lop to perform cross product operation
|
class |
Checkpoint
Lop for checkpoint operations.
|
class |
Compression |
class |
CoVariance
Lop to compute covariance between two 1D matrices
|
class |
CSVReBlock
Lop to convert CSV data into SystemDS data format
|
class |
Ctable
Lop to perform ternary operation.
|
class |
CumulativeOffsetBinary |
class |
CumulativePartialAggregate |
class |
Data
Lop to represent data objects.
|
class |
DataGen
Defines a LOP that generates data.
|
class |
DeCompression |
class |
DnnTransform |
class |
Federated |
class |
FunctionCallCP |
class |
GroupedAggregate
Lop to perform grouped aggregates
|
class |
GroupedAggregateM
Lop to perform mr map-side grouped aggregates
(restriction: sum, w/o weights, ngroups), groups broadcasted
|
class |
LeftIndex |
class |
MapMult |
class |
MapMultChain |
class |
MatMultCP |
class |
MMCJ
Lop to perform cross product operation
|
class |
MMRJ
Lop to perform cross product operation
|
class |
MMTSJ
Lop to perform transpose-identity operation (t(X)%*%X or X%*%t(X)),
used to represent CP and MR instruction but in case of MR there is
an additional Aggregate at the reducers.
|
class |
MMZip
Lop to perform zip matrix multiplication
|
class |
Nary
Lop to perform an operation on a variable number of operands.
|
class |
ParameterizedBuiltin
Defines a LOP for functions.
|
class |
PartialAggregate
Lop to perform a partial aggregation.
|
class |
PickByCount |
class |
PMapMult |
class |
PMMJ |
class |
ReBlock
Lop to perform reblock operation
|
class |
RightIndex |
class |
SortKeys |
class |
SpoofFused |
class |
Sql |
class |
Ternary
Lop to perform Sum of a matrix with another matrix multiplied by Scalar.
|
class |
TernaryAggregate |
class |
Transform |
class |
UAggOuterChain
TODO Currently this lop only support the right hand side in distributed cache.
|
class |
Unary
Lop to perform following operations: with one operand -- NOT(A), ABS(A),
SQRT(A), LOG(A) with two operands where one of them is a scalar -- H=H*i,
H=H*5, EXP(A,2), LOG(A,2)
|
class |
UnaryCP |
class |
WeightedCrossEntropy |
class |
WeightedCrossEntropyR |
class |
WeightedDivMM |
class |
WeightedDivMMR |
class |
WeightedSigmoid |
class |
WeightedSigmoidR |
class |
WeightedSquaredLoss |
class |
WeightedSquaredLossR |
class |
WeightedUnaryMM |
class |
WeightedUnaryMMR |
Modifier and Type | Method and Description |
---|---|
Lop |
LeftIndex.getBroadcastInput() |
Lop |
MapMult.getBroadcastInput() |
Lop |
PMMJ.getBroadcastInput() |
Lop |
Binary.getBroadcastInput() |
Lop |
MapMultChain.getBroadcastInput() |
Lop |
AppendM.getBroadcastInput() |
Lop |
Lop.getBroadcastInput()
Method to get the input to be broadcast.
|
Lop |
ParameterizedBuiltin.getNamedInput(String name) |
Lop |
Data.getNamedInputLop(String name) |
Lop |
Data.getNamedInputLop(String name,
String defaultVal) |
Modifier and Type | Method and Description |
---|---|
ArrayList<Lop> |
FunctionCallCP.getFunctionOutputs() |
HashMap<String,Lop> |
Data.getInputParams()
method to get inputParams
|
ArrayList<Lop> |
Lop.getInputs()
Method to get input of Lops
|
ArrayList<Lop> |
Lop.getOutputs()
Method to get output of Lops
|
Modifier and Type | Method and Description |
---|---|
void |
Lop.addInput(Lop op)
Method to add input to Lop
|
void |
Lop.addOutput(Lop op)
Method to add output to Lop
|
static SortKeys |
SortKeys.constructSortByValueLop(Lop input1,
Lop input2,
SortKeys.OperationTypes op,
Types.DataType dt,
Types.ValueType vt,
Types.ExecType et) |
static SortKeys |
SortKeys.constructSortByValueLop(Lop input1,
SortKeys.OperationTypes op,
Types.DataType dt,
Types.ValueType vt,
Types.ExecType et) |
void |
AppendG.init(Lop input1,
Lop input2,
Lop input3,
Lop input4,
Types.DataType dt,
Types.ValueType vt,
Types.ExecType et) |
void |
Append.init(Lop input1,
Lop input2,
Lop input3,
Types.DataType dt,
Types.ValueType vt) |
void |
AppendGAlignedSP.init(Lop input1,
Lop input2,
Lop input3,
Types.DataType dt,
Types.ValueType vt) |
void |
AppendM.init(Lop input1,
Lop input2,
Lop input3,
Types.DataType dt,
Types.ValueType vt,
Types.ExecType et) |
void |
AppendR.init(Lop input1,
Lop input2,
Types.DataType dt,
Types.ValueType vt,
Types.ExecType et) |
void |
Lop.removeOutput(Lop op)
Method to remove output from Lop
|
void |
Lop.replaceInput(Lop oldInp,
Lop newInp)
Method to replace an input to a Lop
|
static void |
PartialAggregate.setDimensionsBasedOnDirection(Lop lop,
long dim1,
long dim2,
long blen,
Types.Direction dir) |
Modifier and Type | Method and Description |
---|---|
void |
Lop.addToDag(Dag<Lop> dag)
Method to recursively add LOPS to a DAG
|
void |
LopProperties.setLevel(ArrayList<Lop> inputs) |
void |
LopProperties.setProperties(ArrayList<Lop> inputs,
Types.ExecType et) |
Modifier and Type | Class and Description |
---|---|
class |
Dag<N extends Lop>
Class to maintain a DAG of lops and compile it into
runtime instructions, incl piggybacking into jobs.
|
class |
LopComparator<N extends Lop>
Comparator class used in sorting the LopDAG in topological order.
|
Modifier and Type | Method and Description |
---|---|
boolean |
Dag.addNode(Lop node)
Method to add a node to the DAG.
|
Modifier and Type | Method and Description |
---|---|
Lop |
ForStatementBlock.getFromLops() |
Lop |
ForStatementBlock.getIncrementLops() |
Lop |
IfStatementBlock.getPredicateLops() |
Lop |
WhileStatementBlock.getPredicateLops() |
Lop |
ForStatementBlock.getToLops() |
Modifier and Type | Method and Description |
---|---|
ArrayList<Lop> |
StatementBlock.getLops() |
Modifier and Type | Method and Description |
---|---|
void |
ForStatementBlock.setFromLops(Lop lops) |
void |
ForStatementBlock.setIncrementLops(Lop lops) |
void |
IfStatementBlock.setPredicateLops(Lop predicateLops) |
void |
WhileStatementBlock.setPredicateLops(Lop predicateLops) |
void |
ForStatementBlock.setToLops(Lop lops) |
Modifier and Type | Method and Description |
---|---|
void |
StatementBlock.setLops(ArrayList<Lop> lops) |
Modifier and Type | Method and Description |
---|---|
void |
Instruction.setLocation(Lop lop) |
void |
Instruction.setPrivacyConstraint(Lop lop) |
Copyright © 2021 The Apache Software Foundation. All rights reserved.