Interface | Description |
---|---|
Converter<K1 extends org.apache.hadoop.io.Writable,V1 extends org.apache.hadoop.io.Writable,K2 extends org.apache.hadoop.io.Writable,V2 extends org.apache.hadoop.io.Writable> | |
CudaSupportFunctions |
DESIGN DOCUMENTATION FOR SUPPORTING LOWER PRECISION:
1.
|
LibMatrixDNNRotate180.Rotate180Worker | |
MatrixBlockDataInput |
Any data input that is intended to support fast deserialization / read
of entire blocks should implement this interface.
|
MatrixBlockDataOutput |
Any data output that is intended to support fast serialization / write
of entire blocks should implement this interface.
|
Class | Description |
---|---|
AdaptivePartialBlock |
Writable used in ReblockMR for intermediate results.
|
AddDummyWeightConverter | |
BinaryBlockToBinaryCellConverter | |
BinaryBlockToRowBlockConverter | |
BinaryBlockToTextCellConverter | |
BinaryCellToRowBlockConverter | |
BinaryCellToTextConverter | |
CM_N_COVCell | |
CTableMap |
Ctable map is an abstraction for the hashmap used for ctable's hash group-by
because this structure is passed through various interfaces.
|
DenseBlock |
This DenseBlock is an abstraction for different dense, row-major
matrix formats.
|
DenseBlockDRB | |
DenseBlockFactory | |
DenseBlockLDRB | |
DnnParameters |
This class is container that stores parameters required for executing following operations:
conv2d, conv2d_backward_data, conv2d_backward_filter, maxpooling, maxpooling_backward
|
DoublePrecisionCudaSupportFunctions | |
FrameBlock | |
FrameBlock.ColumnMetadata | |
IdenticalConverter | |
IJV |
Helper class for external key/value exchange.
|
InputInfo | |
LibCommonsMath |
Library for matrix operations that need invocation of
Apache Commons Math library.
|
LibMatrixAgg |
MB:
Library for matrix aggregations including ak+, uak+ for all
combinations of dense and sparse representations, and corrections.
|
LibMatrixBincell |
Library for binary cellwise operations (incl arithmetic, relational, etc).
|
LibMatrixCUDA |
All CUDA kernels and library calls are redirected through this class
|
LibMatrixCuDNN |
This class contains method that invoke CuDNN operations.
|
LibMatrixCuDNNConvolutionAlgorithm |
This class is a wrapper that contain necessary data structures to invoke
a cudnn convolution* functions (such as cudnnConvolutionForward, etc)
It implements autocloseable to simplify the LibMatrixCuDNN code and also avoids potential memory leaks.
|
LibMatrixCuDNNInputRowFetcher |
Performs a slice operation: out = in[(n+1):(n+1), 1:numColumns]
|
LibMatrixCuDNNPoolingDescriptors |
This class is a wrapper that contain necessary data structures to invoke
a cudnn convolution* functions (such as cudnnConvolutionForward, etc)
It implements autocloseable to simplify the LibMatrixCuDNN code and also avoids potential memory leaks.
|
LibMatrixCuDNNRnnAlgorithm | |
LibMatrixCuMatMult | |
LibMatrixDatagen | |
LibMatrixDNN | |
LibMatrixDNNConv2d |
This class contains the set of operators used for performing conv2d
|
LibMatrixDNNHelper | |
LibMatrixDNNHelper.CellIndex3 | |
LibMatrixDNNIm2Col |
This class contains the different implementation of im2col operation
|
LibMatrixDNNPooling |
This class contains the set of operators used for performing pooling
|
LibMatrixDNNRelu |
This class contains the different implementation of rotate180 operation
|
LibMatrixDNNRelu.ReluBackward |
Performs the operation: (X gt 0) * dout
|
LibMatrixDNNRotate180 |
This class contains the different implementation of rotate180 operation
|
LibMatrixMult |
MB: Library for matrix multiplications including MM, MV, VV for all
combinations of dense, sparse, ultrasparse representations and special
operations such as transpose-self matrix multiplication.
|
LibMatrixNative | |
LibMatrixOuterAgg |
ACS:
Purpose of this library is to make some of the unary outer aggregate operator more efficient.
|
LibMatrixReorg |
MB:
Library for selected matrix reorg operations including special cases
and all combinations of dense and sparse representations.
|
MatrixBlock | |
MatrixBlock.SparsityEstimate | |
MatrixCell | |
MatrixIndexes |
This represent the indexes to the blocks of the matrix.
|
MatrixPackedCell | |
MatrixValue | |
MatrixValue.CellIndex | |
MultipleOutputCommitter | |
OperationsOnMatrixValues | |
OutputInfo | |
Pair<K,V> | |
PartialBlock | |
RandomMatrixGenerator | |
SinglePrecisionCudaSupportFunctions | |
SparseBlock |
This SparseBlock is an abstraction for different sparse matrix formats.
|
SparseBlockCOO |
SparseBlock implementation that realizes a traditional 'coordinate matrix'
representation, where the entire sparse block is stored as triples in three arrays:
row indexes, column indexes, and values, where row indexes and colunm indexes are
sorted in order to allow binary search.
|
SparseBlockCSR |
SparseBlock implementation that realizes a traditional 'compressed sparse row'
representation, where the entire sparse block is stored as three arrays: ptr
of length rlen+1 to store offsets per row, and indexes/values of length nnz
to store column indexes and values of non-zero entries.
|
SparseBlockFactory | |
SparseBlockMCSR |
SparseBlock implementation that realizes a 'modified compressed sparse row'
representation, where each compressed row is stored as a separate SparseRow
object which provides flexibility for unsorted row appends without the need
for global reshifting of values/indexes but it incurs additional memory
overhead per row for object/array headers per row which also slows down
memory-bound operations due to higher memory bandwidth requirements.
|
SparseRow |
Base class for sparse row implementations such as sparse
row vectors and sparse scalars (single value per row).
|
SparseRowScalar | |
SparseRowVector | |
Tagged<T extends org.apache.hadoop.io.WritableComparable> | |
TaggedAdaptivePartialBlock | |
TaggedFirstSecondIndexes | |
TaggedFirstSecondIndexes.Comparator |
A Comparator optimized for TaggedFirstSecondIndexes.
|
TaggedFirstSecondIndexes.FirstIndexPartitioner |
Partition based on the first index.
|
TaggedFirstSecondIndexes.FirstIndexRangePartitioner |
Partition based on the first index.
|
TaggedFirstSecondIndexes.TagPartitioner |
Partition based on the first index.
|
TaggedMatrixBlock | |
TaggedMatrixCell | |
TaggedMatrixIndexes | |
TaggedMatrixPackedCell | |
TaggedMatrixValue | |
TaggedTripleIndexes | |
TextCellToRowBlockConverter | |
TextToBinaryCellConverter | |
TripleIndexes | |
TripleIndexes.Comparator | |
TripleIndexes.FirstTwoIndexesPartitioner |
Partition based on the first and second index.
|
UnPaddedOutputFormat<K extends org.apache.hadoop.io.Writable,V extends org.apache.hadoop.io.Writable> | |
UnPaddedOutputFormat.UnpaddedRecordWriter<K extends org.apache.hadoop.io.Writable,V extends org.apache.hadoop.io.Writable> | |
WeightedCell | |
WeightedCellToSortInputConverter | |
WeightedPair |
Enum | Description |
---|---|
DenseBlock.Type | |
LibMatrixBincell.BinaryAccessType | |
LibMatrixDNN.PoolingType | |
MatrixBlock.BlockType | |
SparseBlock.Type |
Copyright © 2018 The Apache Software Foundation. All rights reserved.