public class LibMatrixDNN extends Object
Modifier and Type | Class and Description |
---|---|
static class |
LibMatrixDNN.PoolingType |
Modifier and Type | Field and Description |
---|---|
protected static org.apache.commons.logging.Log |
LOG |
Constructor and Description |
---|
LibMatrixDNN() |
Modifier and Type | Method and Description |
---|---|
static void |
appendStatistics(StringBuilder sb) |
static void |
biasAdd(MatrixBlock input,
MatrixBlock bias,
MatrixBlock outputBlock,
int numThreads)
Performs the operation corresponding to the DML script:
ones = matrix(1, rows=1, cols=Hout*Wout)
output = input + matrix(bias %*% ones, rows=1, cols=F*Hout*Wout)
This operation is often followed by conv2d and hence we have introduced bias_add(input, bias) built-in function
|
static void |
biasMultiply(MatrixBlock input,
MatrixBlock bias,
MatrixBlock outputBlock,
int numThreads)
Performs the operation corresponding to the DML script:
ones = matrix(1, rows=1, cols=Hout*Wout)
output = input * matrix(bias %*% ones, rows=1, cols=F*Hout*Wout)
This operation is often followed by conv2d and hence we have introduced bias_multiply(input, bias) built-in function
|
static void |
conv2d(MatrixBlock input,
MatrixBlock filter,
MatrixBlock outputBlock,
ConvolutionParameters params)
This method performs convolution (i.e.
|
static void |
conv2dBackwardData(MatrixBlock filter,
MatrixBlock dout,
MatrixBlock outputBlock,
ConvolutionParameters params)
This method computes the backpropogation errors for previous layer of convolution operation
|
static void |
conv2dBackwardFilter(MatrixBlock input,
MatrixBlock dout,
MatrixBlock outputBlock,
ConvolutionParameters params)
This method computes the backpropogation errors for filter of convolution operation
|
static void |
pooling(MatrixBlock input,
MatrixBlock output,
ConvolutionParameters params,
LibMatrixDNN.PoolingType poolType) |
static void |
poolingBackward(MatrixBlock input,
MatrixBlock dout,
MatrixBlock outputBlock,
ConvolutionParameters params,
boolean performReluBackward,
LibMatrixDNN.PoolingType poolType)
This method computes the backpropogation errors for previous layer of pooling operation
|
static void |
reluBackward(MatrixBlock input,
MatrixBlock dout,
MatrixBlock outputBlock,
int numThreads)
This method computes the backpropagation errors for previous layer of relu operation
|
static void |
resetStatistics() |
public static void appendStatistics(StringBuilder sb)
public static void resetStatistics()
public static void conv2d(MatrixBlock input, MatrixBlock filter, MatrixBlock outputBlock, ConvolutionParameters params) throws DMLRuntimeException
input
- input batchfilter
- filteroutputBlock
- output of convolutionparams
- convolution parametersDMLRuntimeException
- if DMLRuntimeException occurspublic static void conv2dBackwardData(MatrixBlock filter, MatrixBlock dout, MatrixBlock outputBlock, ConvolutionParameters params) throws DMLRuntimeException
filter
- filter used in conv2ddout
- errors from next layeroutputBlock
- output errorsparams
- convolution parametersDMLRuntimeException
- if DMLRuntimeException occurspublic static void conv2dBackwardFilter(MatrixBlock input, MatrixBlock dout, MatrixBlock outputBlock, ConvolutionParameters params) throws DMLRuntimeException
input
- input imagedout
- errors from next layeroutputBlock
- output errorsparams
- convolution parametersDMLRuntimeException
- if DMLRuntimeException occurspublic static void pooling(MatrixBlock input, MatrixBlock output, ConvolutionParameters params, LibMatrixDNN.PoolingType poolType) throws DMLRuntimeException
DMLRuntimeException
public static void poolingBackward(MatrixBlock input, MatrixBlock dout, MatrixBlock outputBlock, ConvolutionParameters params, boolean performReluBackward, LibMatrixDNN.PoolingType poolType) throws DMLRuntimeException
input
- input matrixdout
- dout matrixoutputBlock
- output matrixparams
- convolution parametersperformReluBackward
- perform ReLU backwardpoolType
- type of poolingDMLRuntimeException
- if DMLRuntimeException occurspublic static void reluBackward(MatrixBlock input, MatrixBlock dout, MatrixBlock outputBlock, int numThreads) throws DMLRuntimeException
input
- input matrixdout
- errors from next layeroutputBlock
- output matrixnumThreads
- number of threadsDMLRuntimeException
- if DMLRuntimeException occurspublic static void biasAdd(MatrixBlock input, MatrixBlock bias, MatrixBlock outputBlock, int numThreads) throws DMLRuntimeException
input
- input matrixbias
- bias matrixoutputBlock
- output matrixnumThreads
- number of threadsDMLRuntimeException
- if DMLRuntimeException occurspublic static void biasMultiply(MatrixBlock input, MatrixBlock bias, MatrixBlock outputBlock, int numThreads) throws DMLRuntimeException
input
- input matrixbias
- bias matrixoutputBlock
- output matrixnumThreads
- number of threadsDMLRuntimeException
- if DMLRuntimeException occursCopyright © 2018 The Apache Software Foundation. All rights reserved.