| EstimationUtils | 
  | 
| EstimatorBasicAvg | 
 Basic average case estimator for matrix sparsity:
 sp = 1 - Math.pow(1-sp1*sp2, k) 
 | 
| EstimatorBasicWorst | 
 Basic average case estimator for matrix sparsity:
 sp = Math.min(1, sp1 * k) * Math.min(1, sp2 * k). 
 | 
| EstimatorBitsetMM | 
 This estimator implements a naive but rather common approach of boolean matrix
 multiplies which allows to infer the exact non-zero structure and thus is
 also useful for sparse result preallocation. 
 | 
| EstimatorBitsetMM.BitsetMatrix | 
  | 
| EstimatorBitsetMM.BitsetMatrix1 | 
 This class represents a boolean matrix and provides key operations. 
 | 
| EstimatorBitsetMM.BitsetMatrix2 | 
  | 
| EstimatorDensityMap | 
 This estimator implements an approach called density maps, as introduced in
 David Kernert, Frank Köhler, Wolfgang Lehner: SpMacho - Optimizing Sparse 
 Linear Algebra Expressions with Probabilistic Density Estimation. 
 | 
| EstimatorDensityMap.DensityMap | 
  | 
| EstimatorLayeredGraph | 
 This estimator implements an approach based on a so-called layered graph,
 introduced in
 Edith Cohen. 
 | 
| EstimatorLayeredGraph.LayeredGraph | 
  | 
| EstimatorMatrixHistogram | 
 This estimator implements a remarkably simple yet effective
 approach for incorporating structural properties into sparsity
 estimation. 
 | 
| EstimatorMatrixHistogram.MatrixHistogram | 
  | 
| EstimatorSample | 
 This estimator implements an approach based on row/column sampling
 Yongyang Yu, MingJie Tang, Walid G. 
 | 
| EstimatorSampleRa | 
 This estimator implements an approach based on row/column sampling
 
 Rasmus Resen Amossen, Andrea Campagna, Rasmus Pagh:
 Better Size Estimation for Sparse Matrix Products. 
 | 
| MMNode | 
 Helper class to represent matrix multiply operators in a DAG
 along with references to its abstract data handles. 
 | 
| SparsityEstimator | 
  |