Package org.apache.sysds.hops
Class OptimizerUtils
- java.lang.Object
-
- org.apache.sysds.hops.OptimizerUtils
-
public class OptimizerUtils extends Object
-
-
Nested Class Summary
Nested Classes Modifier and Type Class Description static class
OptimizerUtils.MemoryManager
Memory managers (static partitioned, unified)static class
OptimizerUtils.OptimizationLevel
Optimization Types for Compilation O0 STATIC - Decisions for scheduling operations on CP/MR are based on predefined set of rules, which check if the dimensions are below a fixed/static threshold (OLD Method of choosing between CP and MR).
-
Field Summary
Fields Modifier and Type Field Description static boolean
ALLOW_ALGEBRAIC_SIMPLIFICATION
static boolean
ALLOW_AUTO_VECTORIZATION
static boolean
ALLOW_BINARY_UPDATE_IN_PLACE
Enables update-in-place for binary operators if the first input has no consumers.static boolean
ALLOW_BRANCH_REMOVAL
Enables if-else branch removal for constant predicates (original literals or results of constant folding).static boolean
ALLOW_CODE_MOTION
Enables a specific rewrite for code motion, i.e., hoisting loop invariant code out of while, for, and parfor loops.static boolean
ALLOW_COMBINE_FILE_INPUT_FORMAT
Enables the use of CombineSequenceFileInputFormat with splitsize = 2x hdfs blocksize, if sort buffer size large enough and parallelism not hurt.static boolean
ALLOW_COMMON_SUBEXPRESSION_ELIMINATION
Enables common subexpression elimination in dags.static boolean
ALLOW_COMPRESSION_REWRITE
Boolean specifying if compression rewrites is allowed.static boolean
ALLOW_CONSTANT_FOLDING
Enables constant folding in dags.static boolean
ALLOW_EVAL_FCALL_REPLACEMENT
Replace eval second-order function calls with normal function call if the function name is a known string (after constant propagation).static boolean
ALLOW_FOR_LOOP_REMOVAL
Enables the removal of (par)for-loops when from, to, and increment are constants (original literals or results of constant folding) and lead to an empty sequence, i.e., (par)for-loops without a single iteration.static boolean
ALLOW_INTER_PROCEDURAL_ANALYSIS
Enables interprocedural analysis between main script and functions as well as functions and other functions.static boolean
ALLOW_LOOP_UPDATE_IN_PLACE
Enables a specific rewrite that enables update in place for loop variables that are only read/updated via cp leftindexing.static boolean
ALLOW_OPERATOR_FUSION
static boolean
ALLOW_RAND_JOB_RECOMPILE
static boolean
ALLOW_RUNTIME_PIGGYBACKING
Enables parfor runtime piggybacking of MR jobs into the packed jobs for scan sharing.static boolean
ALLOW_SCRIPT_LEVEL_COMPRESS_COMMAND
This variable allows for insertion of Compress and decompress in the dml script from the user.static boolean
ALLOW_SCRIPT_LEVEL_LOCAL_COMMAND
This variable allows for use of explicit local command, that forces a spark block to be executed and returned as a local block.static boolean
ALLOW_SIZE_EXPRESSION_EVALUATION
Enables simple expression evaluation for datagen parameters 'rows', 'cols'.static boolean
ALLOW_SPLIT_HOP_DAGS
Enables a specific hop dag rewrite that splits hop dags after csv persistent reads with unknown size in order to allow for recompile.static boolean
ALLOW_SUM_PRODUCT_REWRITES
Enables sum product rewrites such as mapmultchains.static boolean
ALLOW_TRANSITIVE_SPARK_EXEC_TYPE
Enable transitive spark execution type selection.static boolean
ALLOW_UNARY_UPDATE_IN_PLACE
Enables the update-in-place for all unary operators with a single consumer.static boolean
ALLOW_WORSTCASE_SIZE_EXPRESSION_EVALUATION
Enables simple expression evaluation for datagen parameters 'rows', 'cols'.static boolean
ASYNC_BROADCAST_SPARK
static boolean
ASYNC_CHECKPOINT_SPARK
static boolean
ASYNC_PREFETCH
Enable prefetch and broadcast.static boolean
AUTO_GPU_CACHE_EVICTION
Automatic placement of GPU lineage cache evictionstatic long
BOOLEAN_SIZE
static long
BUFFER_POOL_SIZE
Buffer pool size in bytesstatic long
CHAR_SIZE
static boolean
COST_BASED_ORDERING
Cost-based instruction ordering to minimize total execution time under the constraint of available memory.static int
DEFAULT_BLOCKSIZE
Default blocksize if unspecified or for testing purposesstatic int
DEFAULT_FRAME_BLOCKSIZE
Default frame blocksizestatic double
DEFAULT_MEM_UTIL_FACTOR
Default buffer pool sizes for static (15%) and unified (85%) memorystatic OptimizerUtils.OptimizationLevel
DEFAULT_OPTLEVEL
Default optimization level if unspecifiedstatic double
DEFAULT_SIZE
Default memory size, which is used if the actual estimate can not be computed e.g., when input/output dimensions are unknown.static double
DEFAULT_UMM_UTIL_FACTOR
static long
DOUBLE_SIZE
static boolean
FEDERATED_COMPILATION
Compile federated instructions based on input federation state and privacy constraints.static Map<Integer,FEDInstruction.FederatedOutput>
FEDERATED_SPECS
static long
INT_SIZE
static double
INVALID_SIZE
static int
IPA_NUM_REPETITIONS
Number of inter-procedural analysis (IPA) repetitions.static long
MAX_NNZ_CP_SPARSE
static long
MAX_NUMCELLS_CP_DENSE
static boolean
MAX_PARALLELIZE_ORDER
Heuristic-based instruction ordering to maximize inter-operator PARALLELISM.static double
MEM_UTIL_FACTOR
Utilization factor used in deciding whether an operation to be scheduled on CP or MR.static OptimizerUtils.MemoryManager
MEMORY_MANAGER
Indicate the current memory manager in effectstatic double
PARALLEL_CP_READ_PARALLELISM_MULTIPLIER
Specifies a multiplier computing the degree of parallelism of parallel text read/write out of the available degree of parallelism.static double
PARALLEL_CP_WRITE_PARALLELISM_MULTIPLIER
static boolean
RULE_BASED_GPU_EXEC
Rule-based operator placement policy for GPU.static long
SAFE_REP_CHANGE_THRES
-
Constructor Summary
Constructors Constructor Description OptimizerUtils()
-
Method Summary
All Methods Static Methods Concrete Methods Modifier and Type Method Description static boolean
allowsToFilterEmptyBlockOutputs(Hop hop)
static boolean
checkSparkBroadcastMemoryBudget(double size)
static boolean
checkSparkBroadcastMemoryBudget(long rlen, long clen, long blen, long nnz)
static boolean
checkSparkCollectMemoryBudget(DataCharacteristics dc, long memPinned)
static boolean
checkSparkCollectMemoryBudget(DataCharacteristics dc, long memPinned, boolean checkBP)
static boolean
checkSparseBlockCSRConversion(DataCharacteristics dcIn)
static CompilerConfig
constructCompilerConfig(CompilerConfig cconf, DMLConfig dmlconf)
static CompilerConfig
constructCompilerConfig(DMLConfig dmlconf)
static void
disableUMM()
Disable unified memory manager and fallback to static partitioning.static void
enableUMM()
Enable unified memory manager and initialize with the default size (85%).static long
estimatePartitionedSizeExactSparsity(long rlen, long clen, long blen, double sp)
Estimates the footprint (in bytes) for a partitioned in-memory representation of a matrix with dimensions=(nrows,ncols) and sparsity=sp.static long
estimatePartitionedSizeExactSparsity(long rlen, long clen, long blen, double sp, boolean outputEmptyBlocks)
static long
estimatePartitionedSizeExactSparsity(long rlen, long clen, long blen, long nnz)
Estimates the footprint (in bytes) for a partitioned in-memory representation of a matrix with dimensions=(nrows,ncols) and number of non-zeros nnz.static long
estimatePartitionedSizeExactSparsity(long rlen, long clen, long blen, long nnz, boolean outputEmptyBlocks)
static long
estimatePartitionedSizeExactSparsity(Hop hop)
Estimates the footprint (in bytes) for a partitioned in-memory representation of a matrix with the hops dimensions and number of non-zeros nnz.static long
estimatePartitionedSizeExactSparsity(DataCharacteristics dc)
Estimates the footprint (in bytes) for a partitioned in-memory representation of a matrix with the given matrix characteristicsstatic long
estimatePartitionedSizeExactSparsity(DataCharacteristics dc, boolean outputEmptyBlocks)
static long
estimateSize(long nrows, long ncols)
Similar to estimate() except that it provides worst-case estimates when the optimization type is ROBUST.static long
estimateSize(DataCharacteristics dc)
static long
estimateSizeEmptyBlock(long nrows, long ncols)
static long
estimateSizeExactSparsity(long nrows, long ncols, double sp)
Estimates the footprint (in bytes) for an in-memory representation of a matrix with dimensions=(nrows,ncols) and sparsity=sp.static long
estimateSizeExactSparsity(long nrows, long ncols, long nnz)
Estimates the footprint (in bytes) for an in-memory representation of a matrix with dimensions=(nrows,ncols) and and number of non-zeros nnz.static long
estimateSizeExactSparsity(DataCharacteristics dc)
static long
estimateSizeTextOutput(int[] dims, long nnz, Types.FileFormat fmt)
static long
estimateSizeTextOutput(long rows, long cols, long nnz, Types.FileFormat fmt)
static boolean
exceedsCachingThreshold(long dim2, double outMem)
Indicates if the given matrix characteristics exceed the threshold for caching, i.e., the matrix should be cached.static double
getBinaryOpSparsity(double sp1, double sp2, Types.OpOp2 op, boolean worstcase)
Estimates the result sparsity for matrix-matrix binary operations (A op B)static double
getBinaryOpSparsityConditionalSparseSafe(double sp1, Types.OpOp2 op, LiteralOp lit)
static long
getBufferPoolLimit()
Returns buffer pool size as set in the configstatic int
getConstrainedNumThreads(int maxNumThreads)
static Types.ExecMode
getDefaultExecutionMode()
static int
getDefaultFrameSize()
static org.apache.log4j.Level
getDefaultLogLevel()
static long
getDefaultSize()
static double
getLeftIndexingSparsity(long rlen1, long clen1, long nnz1, long rlen2, long clen2, long nnz2)
static double
getLocalMemBudget()
Returns memory budget (according to util factor) in bytesstatic long
getMatMultNnz(double sp1, double sp2, long m, long k, long n, boolean worstcase)
static double
getMatMultSparsity(double sp1, double sp2, long m, long k, long n, boolean worstcase)
Estimates the result sparsity for Matrix Multiplication A %*% B.static long
getNnz(long dim1, long dim2, double sp)
static long
getNumIterations(ForStatementBlock fsb, long defaultValue)
static long
getNumIterations(ForProgramBlock fpb, long defaultValue)
static long
getNumIterations(ForProgramBlock fpb, LocalVariableMap vars, long defaultValue)
static int
getNumMappers()
static int
getNumReducers(boolean configOnly)
Returns the number of reducers that potentially run in parallel.static OptimizerUtils.OptimizationLevel
getOptLevel()
static long
getOuterNonZeros(long n1, long n2, long nnz1, long nnz2, Types.OpOp2 op)
static int
getParallelBinaryReadParallelism()
static int
getParallelBinaryWriteParallelism()
static int
getParallelTextReadParallelism()
Returns the degree of parallelism used for parallel text read.static int
getParallelTextWriteParallelism()
Returns the degree of parallelism used for parallel text write.static double
getSparsity(long[] dims, long nnz)
static double
getSparsity(long dim1, long dim2, long nnz)
static double
getSparsity(Hop hop)
static double
getSparsity(DataCharacteristics dc)
static int
getTokenizeNumThreads()
static double
getTotalMemEstimate(Hop[] in, Hop out)
static double
getTotalMemEstimate(Hop[] in, Hop out, boolean denseOut)
static int
getTransformNumThreads()
static String
getUniqueTempFileName()
Wrapper over internal filename construction for external usage.static boolean
isBinaryOpConditionalSparseSafe(Types.OpOp2 op)
Determines if a given binary op is potentially conditional sparse safe.static boolean
isBinaryOpConditionalSparseSafeExact(Types.OpOp2 op, LiteralOp lit)
Determines if a given binary op with scalar literal guarantee an output sparsity which is exactly the same as its matrix input sparsity.static boolean
isBinaryOpSparsityConditionalSparseSafe(Types.OpOp2 op, LiteralOp lit)
static boolean
isHybridExecutionMode()
static boolean
isIndexingRangeBlockAligned(long rl, long ru, long cl, long cu, long blen)
Indicates if the given indexing range is block aligned, i.e., it does not require global aggregation of blocks.static boolean
isIndexingRangeBlockAligned(IndexRange ixrange, DataCharacteristics mc)
Indicates if the given indexing range is block aligned, i.e., it does not require global aggregation of blocks.static boolean
isMaxLocalParallelism(int k)
static boolean
isMemoryBasedOptLevel()
static boolean
isOptLevel(OptimizerUtils.OptimizationLevel level)
static boolean
isSparkExecutionMode()
static boolean
isTopLevelParFor()
static boolean
isUMMEnabled()
Check if unified memory manager is in effectstatic boolean
isValidCPDimensions(long rows, long cols)
Returns false if dimensions known to be invalid; other truestatic boolean
isValidCPDimensions(Types.ValueType[] schema, String[] names)
Returns false if schema and names are not properly specified; other true Length to be > 0, and length of both to be equal.static boolean
isValidCPDimensions(DataCharacteristics mc)
static boolean
isValidCPMatrixSize(long rows, long cols, double sparsity)
Determines if valid matrix size to be represented in CP data structures.static void
resetDefaultSize()
static void
resetStaticCompilerFlags()
static double
rEvalSimpleDoubleExpression(Hop root, HashMap<Long,Double> valMemo)
static double
rEvalSimpleDoubleExpression(Hop root, HashMap<Long,Double> valMemo, LocalVariableMap vars)
static long
rEvalSimpleLongExpression(Hop root, HashMap<Long,Long> valMemo)
Function to evaluate simple size expressions over literals and now/ncol.static long
rEvalSimpleLongExpression(Hop root, HashMap<Long,Long> valMemo, LocalVariableMap vars)
static String
toMB(double inB)
-
-
-
Field Detail
-
MEM_UTIL_FACTOR
public static double MEM_UTIL_FACTOR
Utilization factor used in deciding whether an operation to be scheduled on CP or MR. NOTE: it is important that MEM_UTIL_FACTOR+CacheableData.CACHING_BUFFER_SIZE < 1.0
-
DEFAULT_MEM_UTIL_FACTOR
public static double DEFAULT_MEM_UTIL_FACTOR
Default buffer pool sizes for static (15%) and unified (85%) memory
-
DEFAULT_UMM_UTIL_FACTOR
public static double DEFAULT_UMM_UTIL_FACTOR
-
MEMORY_MANAGER
public static OptimizerUtils.MemoryManager MEMORY_MANAGER
Indicate the current memory manager in effect
-
BUFFER_POOL_SIZE
public static long BUFFER_POOL_SIZE
Buffer pool size in bytes
-
DEFAULT_BLOCKSIZE
public static final int DEFAULT_BLOCKSIZE
Default blocksize if unspecified or for testing purposes- See Also:
- Constant Field Values
-
DEFAULT_FRAME_BLOCKSIZE
public static final int DEFAULT_FRAME_BLOCKSIZE
Default frame blocksize- See Also:
- Constant Field Values
-
DEFAULT_OPTLEVEL
public static final OptimizerUtils.OptimizationLevel DEFAULT_OPTLEVEL
Default optimization level if unspecified
-
DEFAULT_SIZE
public static double DEFAULT_SIZE
Default memory size, which is used if the actual estimate can not be computed e.g., when input/output dimensions are unknown. The default is set to a large value so that operations are scheduled on MR while avoiding overflows as well.
-
DOUBLE_SIZE
public static final long DOUBLE_SIZE
- See Also:
- Constant Field Values
-
INT_SIZE
public static final long INT_SIZE
- See Also:
- Constant Field Values
-
CHAR_SIZE
public static final long CHAR_SIZE
- See Also:
- Constant Field Values
-
BOOLEAN_SIZE
public static final long BOOLEAN_SIZE
- See Also:
- Constant Field Values
-
INVALID_SIZE
public static final double INVALID_SIZE
- See Also:
- Constant Field Values
-
MAX_NUMCELLS_CP_DENSE
public static final long MAX_NUMCELLS_CP_DENSE
- See Also:
- Constant Field Values
-
MAX_NNZ_CP_SPARSE
public static final long MAX_NNZ_CP_SPARSE
-
SAFE_REP_CHANGE_THRES
public static final long SAFE_REP_CHANGE_THRES
- See Also:
- Constant Field Values
-
ALLOW_COMMON_SUBEXPRESSION_ELIMINATION
public static boolean ALLOW_COMMON_SUBEXPRESSION_ELIMINATION
Enables common subexpression elimination in dags. There is however, a potential tradeoff between computation redundancy and data transfer between MR jobs. Since, we do not reason about transferred data yet, this rewrite rule is enabled by default.
-
ALLOW_CONSTANT_FOLDING
public static boolean ALLOW_CONSTANT_FOLDING
Enables constant folding in dags. Constant folding computes simple expressions of binary operations and literals and replaces the hop sub-DAG with a new literal operator.
-
ALLOW_ALGEBRAIC_SIMPLIFICATION
public static boolean ALLOW_ALGEBRAIC_SIMPLIFICATION
-
ALLOW_OPERATOR_FUSION
public static boolean ALLOW_OPERATOR_FUSION
-
ALLOW_BRANCH_REMOVAL
public static boolean ALLOW_BRANCH_REMOVAL
Enables if-else branch removal for constant predicates (original literals or results of constant folding).
-
ALLOW_FOR_LOOP_REMOVAL
public static boolean ALLOW_FOR_LOOP_REMOVAL
Enables the removal of (par)for-loops when from, to, and increment are constants (original literals or results of constant folding) and lead to an empty sequence, i.e., (par)for-loops without a single iteration.
-
ALLOW_AUTO_VECTORIZATION
public static boolean ALLOW_AUTO_VECTORIZATION
-
ALLOW_SIZE_EXPRESSION_EVALUATION
public static boolean ALLOW_SIZE_EXPRESSION_EVALUATION
Enables simple expression evaluation for datagen parameters 'rows', 'cols'. Simple expressions are defined as binary operations on literals and nrow/ncol. This applies only to exact size information.
-
ALLOW_WORSTCASE_SIZE_EXPRESSION_EVALUATION
public static boolean ALLOW_WORSTCASE_SIZE_EXPRESSION_EVALUATION
Enables simple expression evaluation for datagen parameters 'rows', 'cols'. Simple expressions are defined as binary operations on literals and b(+) or b(*) on nrow/ncol. This applies also to worst-case size information.
-
ALLOW_RAND_JOB_RECOMPILE
public static boolean ALLOW_RAND_JOB_RECOMPILE
-
ALLOW_RUNTIME_PIGGYBACKING
public static boolean ALLOW_RUNTIME_PIGGYBACKING
Enables parfor runtime piggybacking of MR jobs into the packed jobs for scan sharing.
-
ALLOW_INTER_PROCEDURAL_ANALYSIS
public static boolean ALLOW_INTER_PROCEDURAL_ANALYSIS
Enables interprocedural analysis between main script and functions as well as functions and other functions. This includes, for example, to propagate statistics into functions if save to do so (e.g., if called once).
-
IPA_NUM_REPETITIONS
public static int IPA_NUM_REPETITIONS
Number of inter-procedural analysis (IPA) repetitions. If set to >=2, we apply IPA multiple times in order to allow scalar propagation over complex function call graphs and various interactions between constant propagation, constant folding, and other rewrites such as branch removal and the merge of statement block sequences.
-
ALLOW_SUM_PRODUCT_REWRITES
public static boolean ALLOW_SUM_PRODUCT_REWRITES
Enables sum product rewrites such as mapmultchains. In the future, this will cover all sum-product related rewrites.
-
ALLOW_SPLIT_HOP_DAGS
public static boolean ALLOW_SPLIT_HOP_DAGS
Enables a specific hop dag rewrite that splits hop dags after csv persistent reads with unknown size in order to allow for recompile.
-
ALLOW_LOOP_UPDATE_IN_PLACE
public static boolean ALLOW_LOOP_UPDATE_IN_PLACE
Enables a specific rewrite that enables update in place for loop variables that are only read/updated via cp leftindexing.
-
ALLOW_UNARY_UPDATE_IN_PLACE
public static boolean ALLOW_UNARY_UPDATE_IN_PLACE
Enables the update-in-place for all unary operators with a single consumer. In this case we do not allocate the output, but directly write the output values back to the input block.
-
ALLOW_BINARY_UPDATE_IN_PLACE
public static boolean ALLOW_BINARY_UPDATE_IN_PLACE
Enables update-in-place for binary operators if the first input has no consumers. In this case we directly write the output values back to the first input block.
-
ALLOW_EVAL_FCALL_REPLACEMENT
public static boolean ALLOW_EVAL_FCALL_REPLACEMENT
Replace eval second-order function calls with normal function call if the function name is a known string (after constant propagation).
-
ALLOW_CODE_MOTION
public static boolean ALLOW_CODE_MOTION
Enables a specific rewrite for code motion, i.e., hoisting loop invariant code out of while, for, and parfor loops.
-
FEDERATED_COMPILATION
public static boolean FEDERATED_COMPILATION
Compile federated instructions based on input federation state and privacy constraints.
-
FEDERATED_SPECS
public static Map<Integer,FEDInstruction.FederatedOutput> FEDERATED_SPECS
-
PARALLEL_CP_READ_PARALLELISM_MULTIPLIER
public static final double PARALLEL_CP_READ_PARALLELISM_MULTIPLIER
Specifies a multiplier computing the degree of parallelism of parallel text read/write out of the available degree of parallelism. Set it to 1.0 to get a number of threads equal the number of virtual cores.- See Also:
- Constant Field Values
-
PARALLEL_CP_WRITE_PARALLELISM_MULTIPLIER
public static final double PARALLEL_CP_WRITE_PARALLELISM_MULTIPLIER
- See Also:
- Constant Field Values
-
ALLOW_COMBINE_FILE_INPUT_FORMAT
public static final boolean ALLOW_COMBINE_FILE_INPUT_FORMAT
Enables the use of CombineSequenceFileInputFormat with splitsize = 2x hdfs blocksize, if sort buffer size large enough and parallelism not hurt. This solves to issues: (1) it combines small files (depending on producers), and (2) it reduces task latency of large jobs with many tasks by factor 2.- See Also:
- Constant Field Values
-
ALLOW_SCRIPT_LEVEL_LOCAL_COMMAND
public static boolean ALLOW_SCRIPT_LEVEL_LOCAL_COMMAND
This variable allows for use of explicit local command, that forces a spark block to be executed and returned as a local block.
-
ALLOW_SCRIPT_LEVEL_COMPRESS_COMMAND
public static boolean ALLOW_SCRIPT_LEVEL_COMPRESS_COMMAND
This variable allows for insertion of Compress and decompress in the dml script from the user. This is added because we want to have a way to test, and verify the correct placement of compress and decompress commands.
-
ALLOW_COMPRESSION_REWRITE
public static boolean ALLOW_COMPRESSION_REWRITE
Boolean specifying if compression rewrites is allowed. This is disabled at run time if the IPA for Workload aware compression is activated.
-
ALLOW_TRANSITIVE_SPARK_EXEC_TYPE
public static boolean ALLOW_TRANSITIVE_SPARK_EXEC_TYPE
Enable transitive spark execution type selection. This refines the exec-type selection logic of unary aggregates by pushing * the unary aggregates, whose inputs are created by spark instructions, to spark execution type as well.
-
ASYNC_PREFETCH
public static boolean ASYNC_PREFETCH
Enable prefetch and broadcast. Prefetch asynchronously calls acquireReadAndRelease() to trigger remote operations, which would otherwise make the next instruction wait till completion. Broadcast allows asynchronously transferring the data to all the nodes.
-
ASYNC_BROADCAST_SPARK
public static boolean ASYNC_BROADCAST_SPARK
-
ASYNC_CHECKPOINT_SPARK
public static boolean ASYNC_CHECKPOINT_SPARK
-
MAX_PARALLELIZE_ORDER
public static boolean MAX_PARALLELIZE_ORDER
Heuristic-based instruction ordering to maximize inter-operator PARALLELISM. Place the Spark operator chains first and trigger them to execute in parallel.
-
COST_BASED_ORDERING
public static boolean COST_BASED_ORDERING
Cost-based instruction ordering to minimize total execution time under the constraint of available memory.
-
RULE_BASED_GPU_EXEC
public static boolean RULE_BASED_GPU_EXEC
Rule-based operator placement policy for GPU.
-
AUTO_GPU_CACHE_EVICTION
public static boolean AUTO_GPU_CACHE_EVICTION
Automatic placement of GPU lineage cache eviction
-
-
Method Detail
-
getOptLevel
public static OptimizerUtils.OptimizationLevel getOptLevel()
-
isMemoryBasedOptLevel
public static boolean isMemoryBasedOptLevel()
-
isOptLevel
public static boolean isOptLevel(OptimizerUtils.OptimizationLevel level)
-
constructCompilerConfig
public static CompilerConfig constructCompilerConfig(DMLConfig dmlconf)
-
constructCompilerConfig
public static CompilerConfig constructCompilerConfig(CompilerConfig cconf, DMLConfig dmlconf)
-
resetStaticCompilerFlags
public static void resetStaticCompilerFlags()
-
getDefaultSize
public static long getDefaultSize()
-
resetDefaultSize
public static void resetDefaultSize()
-
getDefaultFrameSize
public static int getDefaultFrameSize()
-
getLocalMemBudget
public static double getLocalMemBudget()
Returns memory budget (according to util factor) in bytes- Returns:
- local memory budget
-
getBufferPoolLimit
public static long getBufferPoolLimit()
Returns buffer pool size as set in the config- Returns:
- buffer pool size in bytes
-
isUMMEnabled
public static boolean isUMMEnabled()
Check if unified memory manager is in effect- Returns:
- boolean
-
disableUMM
public static void disableUMM()
Disable unified memory manager and fallback to static partitioning. Initialize LazyWriteBuffer with the default size (15%).
-
enableUMM
public static void enableUMM()
Enable unified memory manager and initialize with the default size (85%).
-
isMaxLocalParallelism
public static boolean isMaxLocalParallelism(int k)
-
isTopLevelParFor
public static boolean isTopLevelParFor()
-
checkSparkBroadcastMemoryBudget
public static boolean checkSparkBroadcastMemoryBudget(double size)
-
checkSparkBroadcastMemoryBudget
public static boolean checkSparkBroadcastMemoryBudget(long rlen, long clen, long blen, long nnz)
-
checkSparkCollectMemoryBudget
public static boolean checkSparkCollectMemoryBudget(DataCharacteristics dc, long memPinned)
-
checkSparkCollectMemoryBudget
public static boolean checkSparkCollectMemoryBudget(DataCharacteristics dc, long memPinned, boolean checkBP)
-
checkSparseBlockCSRConversion
public static boolean checkSparseBlockCSRConversion(DataCharacteristics dcIn)
-
getNumReducers
public static int getNumReducers(boolean configOnly)
Returns the number of reducers that potentially run in parallel. This is either just the configured value (SystemDS config) or the minimum of configured value and available reduce slots.- Parameters:
configOnly
- true if configured value- Returns:
- number of reducers
-
getNumMappers
public static int getNumMappers()
-
getDefaultExecutionMode
public static Types.ExecMode getDefaultExecutionMode()
-
isSparkExecutionMode
public static boolean isSparkExecutionMode()
-
isHybridExecutionMode
public static boolean isHybridExecutionMode()
-
getParallelTextReadParallelism
public static int getParallelTextReadParallelism()
Returns the degree of parallelism used for parallel text read. This is computed as the number of virtual cores scales by the PARALLEL_READ_PARALLELISM_MULTIPLIER. If PARALLEL_READ_TEXTFORMATS is disabled, this method returns 1.- Returns:
- degree of parallelism
-
getParallelBinaryReadParallelism
public static int getParallelBinaryReadParallelism()
-
getParallelTextWriteParallelism
public static int getParallelTextWriteParallelism()
Returns the degree of parallelism used for parallel text write. This is computed as the number of virtual cores scales by the PARALLEL_WRITE_PARALLELISM_MULTIPLIER. If PARALLEL_WRITE_TEXTFORMATS is disabled, this method returns 1.- Returns:
- degree of parallelism
-
getParallelBinaryWriteParallelism
public static int getParallelBinaryWriteParallelism()
-
estimateSize
public static long estimateSize(DataCharacteristics dc)
-
estimateSizeExactSparsity
public static long estimateSizeExactSparsity(DataCharacteristics dc)
-
estimateSizeExactSparsity
public static long estimateSizeExactSparsity(long nrows, long ncols, long nnz)
Estimates the footprint (in bytes) for an in-memory representation of a matrix with dimensions=(nrows,ncols) and and number of non-zeros nnz.- Parameters:
nrows
- number of rowsncols
- number of colsnnz
- number of non-zeros- Returns:
- memory footprint
-
estimateSizeExactSparsity
public static long estimateSizeExactSparsity(long nrows, long ncols, double sp)
Estimates the footprint (in bytes) for an in-memory representation of a matrix with dimensions=(nrows,ncols) and sparsity=sp. This function can be used directly in Hops, when the actual sparsity is known i.e.,sp
is guaranteed to give worst-case estimate (e.g., Rand with a fixed sparsity). In all other cases, estimateSize() must be used so that worst-case estimates are computed, whenever applicable.- Parameters:
nrows
- number of rowsncols
- number of colssp
- sparsity- Returns:
- memory footprint
-
estimatePartitionedSizeExactSparsity
public static long estimatePartitionedSizeExactSparsity(DataCharacteristics dc)
Estimates the footprint (in bytes) for a partitioned in-memory representation of a matrix with the given matrix characteristics- Parameters:
dc
- matrix characteristics- Returns:
- memory estimate
-
estimatePartitionedSizeExactSparsity
public static long estimatePartitionedSizeExactSparsity(DataCharacteristics dc, boolean outputEmptyBlocks)
-
estimatePartitionedSizeExactSparsity
public static long estimatePartitionedSizeExactSparsity(long rlen, long clen, long blen, long nnz)
Estimates the footprint (in bytes) for a partitioned in-memory representation of a matrix with dimensions=(nrows,ncols) and number of non-zeros nnz.- Parameters:
rlen
- number of rowsclen
- number of colsblen
- rows/cols per blocknnz
- number of non-zeros- Returns:
- memory estimate
-
estimatePartitionedSizeExactSparsity
public static long estimatePartitionedSizeExactSparsity(long rlen, long clen, long blen, long nnz, boolean outputEmptyBlocks)
-
estimatePartitionedSizeExactSparsity
public static long estimatePartitionedSizeExactSparsity(Hop hop)
Estimates the footprint (in bytes) for a partitioned in-memory representation of a matrix with the hops dimensions and number of non-zeros nnz.- Parameters:
hop
- The hop to extract dimensions and nnz from- Returns:
- the memory estimate
-
estimatePartitionedSizeExactSparsity
public static long estimatePartitionedSizeExactSparsity(long rlen, long clen, long blen, double sp)
Estimates the footprint (in bytes) for a partitioned in-memory representation of a matrix with dimensions=(nrows,ncols) and sparsity=sp.- Parameters:
rlen
- number of rowsclen
- number of colsblen
- rows/cols per blocksp
- sparsity- Returns:
- memory estimate
-
estimatePartitionedSizeExactSparsity
public static long estimatePartitionedSizeExactSparsity(long rlen, long clen, long blen, double sp, boolean outputEmptyBlocks)
-
estimateSize
public static long estimateSize(long nrows, long ncols)
Similar to estimate() except that it provides worst-case estimates when the optimization type is ROBUST.- Parameters:
nrows
- number of rowsncols
- number of cols- Returns:
- memory estimate
-
estimateSizeEmptyBlock
public static long estimateSizeEmptyBlock(long nrows, long ncols)
-
estimateSizeTextOutput
public static long estimateSizeTextOutput(long rows, long cols, long nnz, Types.FileFormat fmt)
-
estimateSizeTextOutput
public static long estimateSizeTextOutput(int[] dims, long nnz, Types.FileFormat fmt)
-
isIndexingRangeBlockAligned
public static boolean isIndexingRangeBlockAligned(IndexRange ixrange, DataCharacteristics mc)
Indicates if the given indexing range is block aligned, i.e., it does not require global aggregation of blocks.- Parameters:
ixrange
- indexing rangemc
- matrix characteristics- Returns:
- true if indexing range is block aligned
-
isIndexingRangeBlockAligned
public static boolean isIndexingRangeBlockAligned(long rl, long ru, long cl, long cu, long blen)
Indicates if the given indexing range is block aligned, i.e., it does not require global aggregation of blocks.- Parameters:
rl
- rows lowerru
- rows uppercl
- cols lowercu
- cols upperblen
- rows/cols per block- Returns:
- true if indexing range is block aligned
-
isValidCPDimensions
public static boolean isValidCPDimensions(DataCharacteristics mc)
-
isValidCPDimensions
public static boolean isValidCPDimensions(long rows, long cols)
Returns false if dimensions known to be invalid; other true- Parameters:
rows
- number of rowscols
- number of cols- Returns:
- true if dimensions valid
-
isValidCPDimensions
public static boolean isValidCPDimensions(Types.ValueType[] schema, String[] names)
Returns false if schema and names are not properly specified; other true Length to be > 0, and length of both to be equal.- Parameters:
schema
- the schemanames
- the names- Returns:
- false if schema and names are not properly specified
-
isValidCPMatrixSize
public static boolean isValidCPMatrixSize(long rows, long cols, double sparsity)
Determines if valid matrix size to be represented in CP data structures. Note that sparsity needs to be specified as rows*cols if unknown.- Parameters:
rows
- number of rowscols
- number of colssparsity
- the sparsity- Returns:
- true if valid matrix size
-
exceedsCachingThreshold
public static boolean exceedsCachingThreshold(long dim2, double outMem)
Indicates if the given matrix characteristics exceed the threshold for caching, i.e., the matrix should be cached.- Parameters:
dim2
- dimension 2outMem
- ?- Returns:
- true if the given matrix characteristics exceed threshold
-
getUniqueTempFileName
public static String getUniqueTempFileName()
Wrapper over internal filename construction for external usage.- Returns:
- unique temp file name
-
allowsToFilterEmptyBlockOutputs
public static boolean allowsToFilterEmptyBlockOutputs(Hop hop)
-
getConstrainedNumThreads
public static int getConstrainedNumThreads(int maxNumThreads)
-
getTransformNumThreads
public static int getTransformNumThreads()
-
getTokenizeNumThreads
public static int getTokenizeNumThreads()
-
getDefaultLogLevel
public static org.apache.log4j.Level getDefaultLogLevel()
-
getMatMultNnz
public static long getMatMultNnz(double sp1, double sp2, long m, long k, long n, boolean worstcase)
-
getMatMultSparsity
public static double getMatMultSparsity(double sp1, double sp2, long m, long k, long n, boolean worstcase)
Estimates the result sparsity for Matrix Multiplication A %*% B.- Parameters:
sp1
- sparsity of Asp2
- sparsity of Bm
- nrow(A)k
- ncol(A), nrow(B)n
- ncol(B)worstcase
- true if worst case- Returns:
- the sparsity
-
getLeftIndexingSparsity
public static double getLeftIndexingSparsity(long rlen1, long clen1, long nnz1, long rlen2, long clen2, long nnz2)
-
isBinaryOpConditionalSparseSafe
public static boolean isBinaryOpConditionalSparseSafe(Types.OpOp2 op)
Determines if a given binary op is potentially conditional sparse safe.- Parameters:
op
- the HOP OpOp2- Returns:
- true if potentially conditional sparse safe
-
isBinaryOpConditionalSparseSafeExact
public static boolean isBinaryOpConditionalSparseSafeExact(Types.OpOp2 op, LiteralOp lit)
Determines if a given binary op with scalar literal guarantee an output sparsity which is exactly the same as its matrix input sparsity.- Parameters:
op
- the HOP OpOp2lit
- literal operator- Returns:
- true if output sparsity same as matrix input sparsity
-
isBinaryOpSparsityConditionalSparseSafe
public static boolean isBinaryOpSparsityConditionalSparseSafe(Types.OpOp2 op, LiteralOp lit)
-
getBinaryOpSparsityConditionalSparseSafe
public static double getBinaryOpSparsityConditionalSparseSafe(double sp1, Types.OpOp2 op, LiteralOp lit)
-
getBinaryOpSparsity
public static double getBinaryOpSparsity(double sp1, double sp2, Types.OpOp2 op, boolean worstcase)
Estimates the result sparsity for matrix-matrix binary operations (A op B)- Parameters:
sp1
- sparsity of Asp2
- sparsity of Bop
- binary operationworstcase
- true if worst case- Returns:
- result sparsity for matrix-matrix binary operations
-
getOuterNonZeros
public static long getOuterNonZeros(long n1, long n2, long nnz1, long nnz2, Types.OpOp2 op)
-
getNnz
public static long getNnz(long dim1, long dim2, double sp)
-
getSparsity
public static double getSparsity(DataCharacteristics dc)
-
getSparsity
public static double getSparsity(long dim1, long dim2, long nnz)
-
getSparsity
public static double getSparsity(Hop hop)
-
getSparsity
public static double getSparsity(long[] dims, long nnz)
-
toMB
public static String toMB(double inB)
-
getNumIterations
public static long getNumIterations(ForProgramBlock fpb, long defaultValue)
-
getNumIterations
public static long getNumIterations(ForStatementBlock fsb, long defaultValue)
-
getNumIterations
public static long getNumIterations(ForProgramBlock fpb, LocalVariableMap vars, long defaultValue)
-
rEvalSimpleLongExpression
public static long rEvalSimpleLongExpression(Hop root, HashMap<Long,Long> valMemo)
Function to evaluate simple size expressions over literals and now/ncol. It returns the exact results of this expressions if known, otherwise Long.MAX_VALUE if unknown.- Parameters:
root
- the root high-level operatorvalMemo
- ?- Returns:
- size expression
-
rEvalSimpleLongExpression
public static long rEvalSimpleLongExpression(Hop root, HashMap<Long,Long> valMemo, LocalVariableMap vars)
-
rEvalSimpleDoubleExpression
public static double rEvalSimpleDoubleExpression(Hop root, HashMap<Long,Double> valMemo)
-
rEvalSimpleDoubleExpression
public static double rEvalSimpleDoubleExpression(Hop root, HashMap<Long,Double> valMemo, LocalVariableMap vars)
-
-